Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Funct Biomater ; 13(4)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36547547

RESUMO

Dental replacements are placed between the abutment teeth. The exceptions are two-unit bridges, as they are supported by a single tooth prepared only on one side of the missing tooth. The presented study deals with an analysis of a pressure force action on two-unit bridges placed in the frontal part (20 samples), where the pressure action is lower, and in the distal part (20 samples), where the pressure action is higher. A CAD program by 3Shape was used for digital designing with two different gap settings, 10 µm (20 samples) and 30 µm (20 samples). Two-unit bridges were attached to the prepared tooth using two types of dental cement (20/20 samples), which were selected for their physical and bioactive properties. All two-unit bridges (a total of 80 samples) were fabricated from CoCr alloys on Mlab cusing R by applying the Selective Laser Melting (SLM) technology. Mechanical testing was performed using the Inspekt5 table blue. The obtained data were used to verify the hypotheses-a difference between both types of cement (A ≠ B), a difference between the frontal and distal two-unit bridges (F ≠ D) and a difference between the gap sizes (10 ≠ 30). To confirm the given theories, data were statistically evaluated using the F-test and subsequent t-tests. The resulting p-value was compared with the level of significance (α = 0.05). A statistical evaluation revealed a significant difference between the compared groups; however, no explicit correlation between the individual groups of specimens was identified.

2.
Polymers (Basel) ; 14(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36501687

RESUMO

This case study describes the use of additive manufacturing technology combining a biodegradable polymer material, polycaprolactone (PCL), and innovative procedures for creating superficial wound dressing, a scaffold in the therapy of extensive contaminated skin defects caused by a traumatic injury. Chronic and contaminated wounds represent a clinical problem and require intensive wound care. The application of a temporary scaffold-facilitated bridging of the wound edges resulted in faster tissue regeneration and a shorter defect closure time, compared to other conservative and surgical methods used in therapy of chronic wounds. Although this procedure has proven to be an optimal alternative to autologous transplants, further studies with a larger number of patients would be beneficial.

3.
Pharmaceuticals (Basel) ; 15(8)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-36015088

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease that causes damage to joints. This review focuses on the possibility of influencing the disease through immunomodulation by mesenchymal stem cells (MSCs). There is an occurrence of rheumatoid factor and RA-specific autoantibodies to citrullinated proteins in most patients. Citrulline proteins have been identified in the joints of RA patients, and are considered to be the most suitable candidates for the stimulation of anti-citrulline protein antibodies production. Fibroblast-like proliferating active synoviocytes actively promote inflammation and destruction in the RA joint, in association with pro-inflammatory cells. The inflammatory process may be suppressed by MSCs, which are a population of adherent cells with the following characteristic phenotype: CD105+, CD73+, CD90+, CD45-, CD34- and HLA DR-. Following the stimulation process, MSCs are capable of immunomodulatory action through the release of bioactive molecules, as well as direct contact with the cells of the immune system. Furthermore, MSCs show the ability to suppress natural killer cell activation and dendritic cells maturation, inhibit T cell proliferation and function, and induce T regulatory cell formation. MSCs produce factors that suppress inflammatory processes, such as PGE2, TGF-ß, HLA-G5, IDO, and IL-10. These properties suggest that MSCs may affect and suppress the excessive inflammation that occurs in RA. The effect of MSCs on rheumatoid arthritis has been proven to be a suitable alternative treatment thanks to successful experiments and clinical studies.

4.
Biomedicines ; 10(4)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35453654

RESUMO

The complex process of placental implantation and development affects trophoblast progenitors and uterine cells through the regulation of transcription factors, cytokines, adhesion receptors and their ligands. Differentiation of trophoblast precursors in the trophectoderm of early ontogenesis, caused by the transcription factors, such as CDX2, TEAD4, Eomes and GATA3, leads to the formation of cytotrophoblast and syncytiotrophoblast populations. The molecular mechanisms involved in placental formation inside the human body along with the specification and differentiation of trophoblast cell lines are, mostly due to the lack of suitable cell models, not sufficiently elucidated. This review is an evaluation of current technologies, which are used to study the behavior of human trophoblasts and other placental cells, as well as their ability to represent physiological conditions both in vivo and in vitro. An in vitro 3D model with a characteristic phenotype is of great benefit for the study of placental physiology. At the same time, it provides great support for future modeling of placental disease.

5.
Polymers (Basel) ; 13(10)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064971

RESUMO

Biopolymers have been the most frequently studied class of materials due to their biodegradability, renewability, and sustainability. The main aim of the presented study was to evaluate degradability of the polymer material blend which was immersed in different solutions. The present study included the production of three different mixtures of polylactic acid and polyhydroxybutyrate, each with a different content of triacetin, which was used as a plasticiser. Applying 3D printing technology, two types of cylindrical specimen were produced, i.e., a solid and a porous specimen, and subjected to in vitro natural degradation. The biodegradation process ran for 195 days in three different solutions (saline, phosphate-buffered saline (PBS), and Hank's solution) in stable conditions of 37 °C and a pH of 7.4, while the specimens were kept in an orbital motion to simulate the flow of fluids. The goal was to identify the effects of a solution type, specimen shape and material composition on the biodegradation of the materials. The monitored parameters included changes in the solution quantity absorbed by the specimens; morphological changes in the specimen structure; and mechanical properties. They were measured by compressive testing using the Inspekt5 Table Blue testing device. The experiment revealed that specimen porosity affected the absorption of the solutions. The non-triacetin materials exhibited a higher mechanical resistance to compression than the materials containing a plasticiser. The final result of the experiment indicated that the plasticiser-free specimens exhibited higher values of solution absorption, no formation of block cracks or bubbles, and the pH values of the solutions in which these materials were immersed remained neutral for the entire experiment duration; furthermore, these materials did not reduce pH values down to the alkaline range, as was the case with the solutions with the plasticiser-containing materials. Generally, in applications where high mechanical resistance, earlier degradation, and more stable conditions are required, the use of non-plasticiser materials is recommended.

6.
J Biotechnol ; 322: 33-42, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-32673686

RESUMO

In recent years, the number of cervical interventions has increased. The stress shielding effect is a serious complication in cervical spine interventions. Topological optimization is based on finite element method structural analysis and numerical simulations. The generated design of cervical implants is made from Ti6Al4V powder by selective laser melting while the optimized cage is numerically tested for compressive axial loading and the results are compared with experimental measurement. Additive manufacturing technologies and new software possibilities in the field of structural analysis, which use the finite element method tools, help to execute implant topological optimization that is useful for clinical practice. The inner structures of the implant would be impossible to make by conventional manufacturing technologies. The resulting implant design, after modification, must fulfill strict application criteria for the area of cervical spine with respect to its material and biomechanical properties. The aim of this work was to alter the mechanical properties of the cervical intervertebral cage to address the clinical concern of the stress shielding effect by topological optimization. A methodology of cervical implant compressive axial loading numerical simulation was created, and subsequent experimental testing was done to obtain real material properties after a selective laser melting process. The weight of the optimized implant was reduced by 28.92 %. Results of the experimental testing and numerical simulation of topologically optimized design showed 10-times lower stiffness compared to the solid cage design, and the real yield strength of the optimized structure is 843.8 MPa based on experimental results.


Assuntos
Vértebras Cervicais/cirurgia , Simulação por Computador , Fixadores Internos , Desenho de Prótese/métodos , Fusão Vertebral/instrumentação , Ligas/química , Discotomia , Módulo de Elasticidade , Análise de Elementos Finitos , Humanos , Lasers , Teste de Materiais , Propriedades de Superfície , Titânio/química
7.
J Biotechnol ; 284: 123-130, 2018 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-30171928

RESUMO

Additive manufacturing has a great potential for creating hard tissue substitutes, such as bone and cartilage, or soft tissues, such as vascular and skin grafts. This study is a pilot study for 3D printing of a new material mixture potentially used as a tubular substitute for urethra replacement. This new mixture is a blend of polylactic acid (PLA) and polyhydroxybutyrate (PHB). The basic aspect that affects the 3D printing process is correct material preparation and setting of 3D printer parameters. Selection of material and printing parameters depend on printing technology. The printing technology affects material behavior during printing process. The goal of preprocessing and 3D printing process is to provide stabile conditions during manufacturing to obtain usable printed samples. The study deals with preparation of material before 3D printing - material drying. Moisture in material affects material degradation and viscosity during printing. According to this, it is necessary to verify recommended drying parameters. Verification was performed by printing strand samples from dried and non-dried material and also by calculating and comparing respective viscosities that change in time. Printed strand clearly show that non-dried material degrades in less than 10 min, what leads to inappropriate application in short-time printing. Dried material shows significant stability and degrades slightly during selected time span. For metrological verification of material stability two sample types were designed and manufactured - a cubic sample which represents basic scaffold structures and a tubular one that serves as urethra substitution. Obtained results showed appropriate usability of selected technology and printing parameters for PLA / PHB material blend.


Assuntos
Hidroxibutiratos/química , Poliésteres/química , Engenharia Tecidual , Uretra , Elasticidade , Impressão Tridimensional , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...