Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Chem Sci ; 15(16): 6168-6177, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38665538

RESUMO

A stimuli-sensitive linker is one of the indispensable components of prodrugs for cancer therapy as it covalently binds the drug and releases it upon external stimulation at the tumour site. Quinone methide elimination has been widely used as the key transformation to release drugs based on their nucleofugacity. The usual approach is to bind the drug to the linker as a carbamate and release it as a free amine after a self-immolative 1,6-elimination. Although this approach is very efficient, it is limited to amines (as carbamates), alcohols or phenols (as carbonates) or other acidic functional groups. We report here a self-immolative spacer capable of directly linking and releasing amines, phenols, thiols, sulfonamides and carboxyamides after a reductive stimulus. The spacer is based on the structure of (5-nitro-2-pyrrolyl)methanol (NPYM-OH), which was used for the direct alkylation of the functional groups mentioned above. The spacer is metabolically stable and has three indispensable sites for bioconjugation: the bioresponsive trigger, the conjugated 1,6 self-immolative system and a third arm suitable for conjugation with a carrier or other modifiers. Release was achieved by selective reduction of the nitro group over Fe/Pd nanoparticles (NPs) in a micellar aqueous environment (H2O/TPGS-750-M), or by NADH mediated nitroreductase activation. A DFT study demonstrates that, during the 1,6 elimination, the transition state formed from 5-aminopyrrole has a lower activation energy compared to other 5-membered heterocycles or p-aminobenzyl derivatives. The NPYM scaffold was validated by late-stage functionalisation of approved drugs such as celecoxib, colchicine, vorinostat or ciprofloxacin. A hypoxia-activated NPYM-based prodrug (HAP) derived from HDAC inhibitor ST7612AA1 was also produced, which was active in cancer cells under hypoxic conditions.

2.
Cancers (Basel) ; 15(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37190301

RESUMO

It is recognized that prostaglandin E2 (PGE2) is one key lipid mediator involved in chronic inflammation, and it is directly implicated in tumor development by regulating cancer cell growth and migration, apoptosis, epithelial-mesenchymal transition, angiogenesis, and immune escape. In addition, the expression of the enzymes involved in PGE2 synthesis, cyclooxygenase 2 (COX-2) and microsomal prostaglandin E synthase 1 (mPGES1), positively correlates with tumor progression and aggressiveness, clearly indicating the crucial role of the entire pathway in cancer. Moreover, several lines of evidence suggest that the COX2/mPGES1/PGE2 inflammatory axis is involved in the modulation of epidermal growth factor receptor (EGFR) signaling to reinforce the oncogenic drive of EGFR activation. Similarly, EGFR activation promotes the induction of COX2/mPGES1 expression and PGE2 production. In this review, we describe the interplay between COX2/mPGES1/PGE2 and EGFR in cancer, and new therapeutic strategies that target this signaling pathway, to outline the importance of the modulation of the inflammatory process in cancer fighting.

3.
Foods ; 12(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36832915

RESUMO

Phaseolus vulgaris L. (common bean) contains high levels of proteins, unsaturated fatty acids, minerals, fibers, and vitamins, and for this reason, it represents an essential component of the diet. More than 40,000 varieties of beans have been recognized and are staple foods in the traditional cuisine of many countries. In addition to its high nutritional value, P. vulgaris is also characterized by its nutraceutical properties and favors environmental sustainability. In this manuscript, we studied two different varieties of P. vulgaris, Cannellino and Piattellino. We investigated the effects of traditional processing (soaking and cooking) and in vitro gastrointestinal digestion of beans on their phytochemical composition and anticancer activity. Using HT29 and HCT116 colon cancer cell lines, we showed that the extract obtained after gastrointestinal digestion of cooked beans (the bioaccessible fraction, BF) induces cell death through the induction of the autophagic process. We demonstrated that the BF of Cannellino and Piattellino beans at the concentration of 100 µg/mL reduces cell vitality, measured by MMT assay, of both HT29 (88.41% ± 5.79 and 94.38% ± 0.47) and HCT116 (86.29% ± 4.3 and 91.23% ± 0.52) cell lines. Consistently, the treatment of HT29 cells with 100 µg/mL of Cannellino and Piattellino BFs reduced clonogenicity by 95% ± 2.14 and 96% ± 0.49, respectively. Moreover, the activity of extracts appeared to be selective for colon cancer cells. The data shown in this work further confirm P. vulgaris to be among foods with beneficial effects for human health.

4.
Chem Commun (Camb) ; 58(75): 10532-10535, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36043993

RESUMO

We report a new 1-6 self-immolative, traceless crosslinker derived from the natural product gallic acid. The linker acts through a pH-dependent mechanism for drug release. This 5-(hydroxymethyl)pyrogallol orthoester derivative (HMPO) was stable for 24 hours at pH values of 7.4 and 6.6 and in plasma, releasing molecules bound to the hydroxymethyl moiety under acid-dependent stimuli at pH 5.5. The linker was non-toxic and was used for the conjugation of Doxorubicin (Doxo) or Combretastatin A4 with Cetuximab. The ADCs formed showed their pH responsivity reducing cell viability of A431 and A549 cancer cells better than Cetuximab alone.


Assuntos
Produtos Biológicos , Imunoconjugados , Linhagem Celular Tumoral , Cetuximab/farmacologia , Doxorrubicina/farmacologia , Ácido Gálico/farmacologia , Concentração de Íons de Hidrogênio , Imunoconjugados/química , Imunoconjugados/farmacologia , Pirogalol
5.
Int J Mol Sci ; 23(15)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35955669

RESUMO

Avena sativa L. is a wholegrain cereal and an important edible crop. Oats possesses high nutritional and health promoting values and contains high levels of bioactive compounds, including a group of phenolic amides, named avenanthramides (Avns), exerting antioxidant, anti-inflammatory, and anticancer activities. Epidermal growth factor receptor (EGFR) represents one of the most known oncogenes and it is frequently up-regulated or mutated in human cancers. The oncogenic effects of EGFR include enhanced cell growth, angiogenesis, and metastasis, and down-regulation or inhibition of EGFR signaling has therapeutic benefit. Front-line EGFR tyrosine kinase inhibitor therapy is the standard therapy for patients with EGFR-mutated lung cancer. However, the clinical effects of EGFR inhibition may be lost after a few months of treatment due to the onset of resistance. Here, we showed the anticancer activity of Avns, focusing on EGFR activation and signaling pathway. Lung cancer cellular models have been used to evaluate the activity of Avns on tumor growth, migration, EMT, and anoikis induced by EGF. In addition, docking and molecular dynamics simulations showed that the Avns bind with high affinity to a region in the vicinity of αC-helix and the DGF motif of EGFR, jeopardizing the target biological function. Altogether, our results reveal a new pharmacological activity of Avns as EGFR tyrosine kinase inhibitors.


Assuntos
Avena , Neoplasias Pulmonares , Avena/química , Linhagem Celular Tumoral , Grão Comestível/química , Fator de Crescimento Epidérmico , Receptores ErbB/análise , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , ortoaminobenzoatos
7.
Biology (Basel) ; 9(12)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271839

RESUMO

The involvement of inflammation in cancer progression has been the subject of research for many years. Inflammatory milieu and immune response are associated with cancer progression and recurrence. In different types of tumors, growth and metastatic phenotype characterized by the epithelial mesenchymal transition (EMT) process, stemness, and angiogenesis, are increasingly associated with intrinsic or extrinsic inflammation. Among the inflammatory mediators, prostaglandin E2 (PGE2) supports epithelial tumor aggressiveness by several mechanisms, including growth promotion, escape from apoptosis, transactivation of tyrosine kinase growth factor receptors, and induction of angiogenesis. Moreover, PGE2 is an important player in the tumor microenvironment, where it suppresses antitumor immunity and regulates tumor immune evasion, leading to increased tumoral progression. In this review, we describe the current knowledge on the pro-tumoral activity of PGE2 focusing on its role in cancer progression and in the regulation of the tumor microenvironment.

8.
Antioxidants (Basel) ; 9(12)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256057

RESUMO

Phaseolus vulgaris L. (common bean) is a leguminous species that is an important dietary component due to its high content of proteins, unsaturated fatty acids, minerals, dietary fibers and vitamins. Due to the high content of polyphenols, several biological activities have been described for bean extracts, making it possible to include P. vulgaris among food with beneficial effects for human health. Moreover, more than 40,000 varieties of beans have been recognised with different nutraceutical properties, pointing out the importance of food biodiversity. In this work, we describe for the first time the chemical composition and biological activity of a newly recognized Italian variety of P. vulgaris grown in a restricted area of the Tuscany region and named "Fagiola di Venanzio". Fagiola di Venanzio water extract is rich in proteins, sugars and polyphenols and displays antioxidant, anti-inflammatory and antiproliferative activities in in vitro assays on colon cancer cellular models. Our data indicate that this variety of P. vulgaris appears to be a promising source of bioactive compounds and encourage more in-depth studies to better elucidate the implications of its consumption for public health.

9.
Arch Biochem Biophys ; 691: 108483, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32735866

RESUMO

Krev interaction trapped protein 1 (KRIT1) is a scaffold protein known to form functional complexes with distinct proteins, including Malcavernin, PDCD10, Rap1 and others. It appears involved in several cellular signaling pathways and exerts a protective role against inflammation and oxidative stress. KRIT1 has been studied as a regulator of endothelial cell functions and represents a determinant in the pathogenesis of Cerebral Cavernous Malformation (CCM), a cerebrovascular disease characterized by the formation of clusters of abnormally dilated and leaky blood capillaries, which predispose to seizures, neurological deficits and intracerebral hemorrhage. Although KRIT1 is ubiquitously expressed, few studies have described its involvement in pathologies other than CCM including cancer. Cutaneous melanoma represents the most fatal skin cancer due to its high metastatic propensity. Despite the numerous efforts made to define the signaling pathways activated during melanoma progression, the molecular mechanisms at the basis of melanoma growth, phenotype plasticity and resistance to therapies are still under investigation.


Assuntos
Proteína KRIT1/metabolismo , Melanoma/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Núcleo Celular/metabolismo , Proliferação de Células/genética , Regulação para Baixo , Feminino , Técnicas de Silenciamento de Genes/métodos , Humanos , Proteína KRIT1/genética , Masculino , Melanócitos/metabolismo , Melanoma/patologia , Pessoa de Meia-Idade , beta Catenina/metabolismo
10.
Methods Mol Biol ; 2152: 3-25, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32524540

RESUMO

Cerebral cavernous malformation (CCM) is a rare cerebrovascular disorder of genetic origin consisting of closely clustered, abnormally dilated and leaky capillaries (CCM lesions), which occur predominantly in the central nervous system. CCM lesions can be single or multiple and may result in severe clinical symptoms, including focal neurological deficits, seizures, and intracerebral hemorrhage. Early human genetic studies demonstrated that CCM disease is linked to three chromosomal loci and can be inherited as autosomal dominant condition with incomplete penetrance and highly variable expressivity, eventually leading to the identification of three disease genes, CCM1/KRIT1, CCM2, and CCM3/PDCD10, which encode for structurally unrelated intracellular proteins that lack catalytic domains. Biochemical, molecular, and cellular studies then showed that these proteins are involved in endothelial cell-cell junction and blood-brain barrier stability maintenance through the regulation of major cellular structures and mechanisms, including endothelial cell-cell and cell-matrix adhesion, actin cytoskeleton dynamics, autophagy, and endothelial-to-mesenchymal transition, suggesting that they act as pleiotropic regulators of cellular homeostasis, and opening novel therapeutic perspectives. Indeed, accumulated evidence in cellular and animal models has eventually revealed that the emerged pleiotropic functions of CCM proteins are mainly due to their ability to modulate redox-sensitive pathways and mechanisms involved in adaptive responses to oxidative stress and inflammation, thus contributing to the preservation of cellular homeostasis and stress defenses.In this introductory review, we present a general overview of 20 years of amazing progress in the identification of genetic culprits and molecular mechanisms underlying CCM disease pathogenesis, and the development of targeted therapeutic strategies.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/terapia , Terapia de Alvo Molecular , Alelos , Animais , Biomarcadores , Gerenciamento Clínico , Modelos Animais de Doenças , Estudos de Associação Genética/métodos , Hemangioma Cavernoso do Sistema Nervoso Central/diagnóstico , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Humanos , Imageamento por Ressonância Magnética , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
11.
Methods Mol Biol ; 2152: 345-369, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32524564

RESUMO

The yeast two-hybrid system was originally designed to detect protein-protein interactions using yeast transcriptional activators. Since its original description, this technique has been extensively used to identify protein-protein interactions from many different organisms, thus providing a convenient mean to both screen for proteins that interact with a protein of interest and to characterize the known interaction between two proteins. Nowadays, the yeast two-hybrid screen remains one of the leading molecular tools to study protein-protein interactions in native intracellular conditions. In these years, the technique has improved to overcome the limitations of the original assay, and many efforts have been made to scale up the technique and to adapt it to large-scale studies. In addition, variations have been introduced to enlarge the range of proteins and interactors that can be assayed by hybrid-based approaches.Several groups studying molecular mechanisms underlying the Cerebral Cavernous Malformation disease have successfully used the yeast two-hybrid system or related methods to isolate, identify, and characterize molecular interactions involved in the onset and progression of the pathology.Here we describe general principles, strengths, and limits of the yeast two-hybrid technology, and the basic protocol for a yeast two-hybrid library screening and for a small-scale yeast two-hybrid assay by using a GAL4-based system.


Assuntos
Biomarcadores , Suscetibilidade a Doenças , Hemangioma Cavernoso do Sistema Nervoso Central/etiologia , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Expressão Gênica , Ordem dos Genes , Genes Reporter , Vetores Genéticos/genética , Biblioteca de Peptídeos , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos
12.
Methods Mol Biol ; 2152: 377-385, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32524566

RESUMO

Cerebral cavernous malformation (CCM) is a cerebrovascular disorder of proven genetic origin characterized by abnormally dilated and leaky capillaries occurring mainly in the central nervous system, with a prevalence of 0.3-0.5% in the general population. Genetic studies have identified three genes associated to CCMs: KRIT1 (CCM1), MGC4607 (CCM2), and PDCD10 (CCM3), which account for about 50%, 20%, and 10% of the cases, respectively. The great advances in the knowledge of the physiopathological functions of CCM genes, such as their involvement in the angiogenic process, have allowed to propose distinct putative therapeutic compounds, which showed to be effective at least in limiting some pathological phenotypes in cellular and animal models of the disease. However, despite numerous efforts, targeted pharmacological therapies that improve the outcome of CCM disease are currently lacking.Here we describe simply and low-cost assays as in vitro endothelial cell proliferation and migration assays that can be used to better understand the role of CCM genes on endothelial cell functions and to screen potential new compounds for CCM therapy.


Assuntos
Suscetibilidade a Doenças , Células Endoteliais/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/etiologia , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Neovascularização Patológica/etiologia , Neovascularização Patológica/metabolismo , Movimento Celular/genética , Proliferação de Células , Células Cultivadas , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Humanos , Proteínas Associadas aos Microtúbulos/genética
13.
Cell Signal ; 68: 109527, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31917192

RESUMO

Cerebral cavernous malformation (CCM) is a cerebrovascular disorder of proven genetic origin characterized by abnormally dilated and leaky capillaries occurring mainly in the central nervous system, with a prevalence of 0.3-0.5% in the general population. Genetic studies have identified causative mutations in three genes, CCM1/KRIT1, CCM2 and CCM3, which are involved in the maintenance of vascular homeostasis. However, distinct studies in animal models have clearly shown that CCM gene mutations alone are not sufficient to cause CCM disease, but require additional contributing factors, including stochastic events of increased oxidative stress and inflammation. Consistently, previous studies have shown that up-regulation of NADPH oxidase-mediated production of reactive oxygen species (ROS) in KRIT1 deficient endothelium contributes to the loss of microvessel barrier function. In this study, we demonstrate that KRIT1 loss-of-function in stromal cells, such as fibroblasts, causes the up-regulation of NADPH oxidase isoform 1 (NOX1) and the activation of inflammatory pathways, which in turn promote an enhanced production of proangiogenic factors, including vascular endothelial growth factor (VEGF) and prostaglandin E2 (PGE2). Furthermore and importantly, we show that conditioned media from KRIT1 null fibroblasts induce proliferation, migration, matrix metalloproteinase 2 (MMP2) activation and VE-cadherin redistribution in wild type human endothelial cells. Taken together, our results demonstrate that KRIT1 loss-of-function in stromal cells affects the surrounding microenvironment through a NOX1-mediated induction and release of angiogenic factors that are able to promote paracrine proangiogenic responses in human endothelial cells, thus pointing to a novel role for endothelial cell-nonautonomous effects of KRIT1 mutations in CCM pathogenesis, and opening new perspectives for disease prevention and treatment.


Assuntos
Proteína KRIT1/metabolismo , NADPH Oxidase 1/metabolismo , Neovascularização Fisiológica , Comunicação Parácrina , Regulação para Cima , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/biossíntese , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Camundongos Knockout , Neovascularização Fisiológica/efeitos dos fármacos , Comunicação Parácrina/efeitos dos fármacos , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Regulação para Cima/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
Nutrients ; 10(9)2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30149546

RESUMO

Avenanthramides (Avns), polyphenols found exclusively in oats, are emerging as promising therapeutic candidates for the treatment of several human diseases, including colon cancer. By engineering a Saccharomyces cerevisiae strain, we previously produced two novel phenolic compounds, N-(E)-p-coumaroyl-3-hydroxyanthranilic acid (Yeast avenanthramide I, YAvnI) and N-(E)-caffeoyl-3-hydroxyanthranilic acid (Yeast avenanthramide II, YAvnII), which are endowed with a structural similarity to bioactive oat avenanthramides and stronger antioxidant properties. In this study, we evaluated the ability of these yeast-derived recombinant avenanthramides to inhibit major hallmarks of colon cancer cells, including sustained proliferation, migration and epithelial-mesenchymal transition (EMT). Using the human colon adenocarcinoma cell line HT29, we compared the impact of YAvns and natural Avns, including Avn-A and Avn-C, on colon cancer cells by performing MTT, clonogenic, adhesion, migration, and anchorage-independent growth assays, and analyzing the expression of EMT markers. We found that both YAvns and Avns were able to inhibit colon cancer cell growth by increasing the expression of p21, p27 and p53 proteins. However, YAvns resulted more effective than natural compounds in inhibiting cancer cell migration and reverting major molecular features of the EMT process, including the down-regulation of E-cadherin mRNA and protein levels.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , ortoaminobenzoatos/farmacologia , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Antineoplásicos/isolamento & purificação , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Células HT29 , Humanos , Invasividade Neoplásica , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , ortoaminobenzoatos/isolamento & purificação
15.
Dalton Trans ; 47(28): 9492-9503, 2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-29963662

RESUMO

The role of copper in cancer progression has been established since decades. Additionally, copper is able to stimulate angiogenesis through the control of VEGF expression and activity in endothelial cells. In this paper a tetrapeptide, belonging to the histidine-proline-rich glycoprotein (HPRG) and encompassing four repeats of the sequence GHHPH (named TetraHPRG), was synthesized and its copper(ii) complex species were characterized by means of potentiometry, UV-vis, circular dichroism (CD), electron paramagnetic resonance (EPR) and electron spray ionization mass spectrometry (ESI-MS). Moreover, a peptide covalently bound through an amidic bond to trehalose (TH-TetraHPRG) was designed and synthesized as a prodrug system. The activity of both TetraHPRG and TH-TetraHPRG molecules on copper and VEGF induced angiogenic responses in endothelial cells was assessed. The two peptides show a similar and effective anti-angiogenic activity on both molecular and cellular responses. Since the trehalose derivative has a higher resistance to enzymatic degradation, it can be further exploited as a potential drug delivery system with anti-angiogenic activity.


Assuntos
Inibidores da Angiogênese/farmacologia , Cobre/farmacologia , Células Endoteliais/efeitos dos fármacos , Peptídeos/farmacologia , Proteínas/química , Inibidores da Angiogênese/química , Animais , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Cobre/química , Células Endoteliais/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Neovascularização Fisiológica/efeitos dos fármacos , Peptídeos/química , Suínos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
16.
Oncotarget ; 8(19): 31270-31287, 2017 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-28415726

RESUMO

Prostaglandin E2 (PGE2) interacts with tyrosine kinases receptor signaling in both tumor and stromal cells supporting tumor progression. Here we demonstrate that in non-small cell lung carcinoma (NSCLC) cells, A549 and GLC82, PGE2 promotes nuclear translocation of epidermal growth factor receptor (nEGFR), affects gene expression and induces cell growth. Indeed, cyclin D1, COX-2, iNOS and c-Myc mRNA levels are upregulated following PGE2 treatment. The nuclear localization sequence (NLS) of EGFR as well as its tyrosine kinase activity are required for the effect of PGE2 on nEGFR and downstream signaling activities. PGE2 binds its bona fide receptor EP3 which by activating SRC family kinases, induces ADAMs activation which, in turn, releases EGFR-ligands from the cell membrane and promotes nEGFR. Amphiregulin (AREG) and Epiregulin (EREG) appear to be involved in nEGFR promoted by the PGE2/EP3-SRC axis. Pharmacological inhibition or silencing of the PGE2/EP3/SRC-ADAMs signaling axis or EGFR ligands i.e. AREG and EREG expression abolishes nEGFR induced by PGE2. In conclusion, PGE2 induces NSCLC cell proliferation by EP3 receptor, SRC-ADAMs activation, EGFR ligands shedding and finally, phosphorylation and nEGFR. Since nuclear EGFR is a hallmark of cancer aggressiveness, our findings reveal a novel mechanism for the contribution of PGE2 to tumor progression.


Assuntos
Adenocarcinoma/metabolismo , Dinoprostona/metabolismo , Receptores ErbB/metabolismo , Neoplasias Pulmonares/metabolismo , Receptores de Prostaglandina E Subtipo EP3/metabolismo , Transdução de Sinais , Quinases da Família src/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Linhagem Celular Tumoral , Proliferação de Células , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Ligantes , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Ligação Proteica , Proteína Quinase C/metabolismo , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo
17.
Nitric Oxide ; 66: 17-29, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28257996

RESUMO

Inflammatory prostaglandin E-2 (PGE-2) favors cancer progression in epithelial tumors characterized by persistent oncogene input. However, its effects on tumor cell stemness are poorly understood at molecular level. Here we describe two epithelial tumor cells A431 and A459, originating from human lung and skin tumors, in which epithelial growth factor (EGF) induces sequential up-regulation of mPGES-1 and iNOS enzymes, producing an inflammatory intracellular milieu. We demonstrated that concerted action of EGF, mPGES-1 and iNOS causes sharp changes in cell phenotype demonstrated by acquisition of stem-cell features and activation of the epithelial-mesenchymal transition (EMT). When primed with EGF, epithelial tumor cells transfected with mPGES-1 or iNOS to ensure steady enzyme levels display major stem-like and EMT markers, such as reduction in E-cadherin with a concomitant rise in vimentin, ALDH-1, CD133 and ALDH activity. Tumorsphere studies with these cells show increased sphere number and size, enhanced migratory and clonogenic capacity and sharp changes in EMT markers, indicating activation of this process. The concerted action of the enzymes forms a well-orchestrated cascade where expression of iNOS depends on overexpression of mPGES-1. Indeed, we show that through its downstream effectors (PGE-2, PKA, PI3K/Akt), mPGES-1 recruits non-canonical transcription factors, thus facilitating iNOS production. In conclusion, we propose that the initial event leading to tumor stem-cell activation may be a leveraged intrinsic mechanism in which all players are either inherent constituents (EGF) or highly inducible proteins (mPGES-1, iNOS) of tumor cells. We suggest that incipient tumor aggressiveness may be moderated by reducing pivotal input of mPGES-1.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Receptores ErbB/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Prostaglandina-E Sintases/metabolismo , Linhagem Celular Tumoral , Células Epiteliais/citologia , Humanos , Fenótipo , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Células-Tronco , Células Tumorais Cultivadas
18.
Biochim Biophys Acta Gen Subj ; 1861(4): 860-870, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28095317

RESUMO

BACKGROUND: Liposomes, used to improve the therapeutic index of new and established drugs, have advanced with the insertion of active targeting. The lectin from Lotus tetragonolobus (LTL), which binds glycans containing alpha-1,2-linked fucose, reveals surface regionalized glycoepitopes in highly proliferative cells not detectable in normally growing cells. In contrast, other lectins localize the corresponding glycoepitopes all over the cell surface. LTL also proved able to penetrate the cells by an unconventional uptake mechanism. METHODS: We used confocal laser microscopy to detect and localize LTL-positive glycoepitopes and lectin uptake in two cancer cell lines. We then constructed doxorubicin-loaded liposomes functionalized with LTL. Intracellular delivery of the drug was determined in vitro and in vivo by confocal and electron microscopy. RESULTS: We confirmed the specific localization of Lotus binding sites and the lectin uptake mechanism in the two cell lines and determined that LTL-functionalized liposomes loaded with doxorubicin greatly increased intracellular delivery of the drug, compared to unmodified doxorubicin-loaded liposomes. The LTL-Dox-L mechanism of entry and drug delivery was different to that of Dox-L and other liposomal preparations. LTL-Dox-L entered the cells one by one in tiny tubules that never fused with lysosomes. LTL-Dox-L injected in mice with melanoma specifically delivered loaded Dox to the cytoplasm of tumor cells. CONCLUSIONS: Liposome functionalization with LTL promises to broaden the therapeutic potential of liposomal doxorubicin treatment, decreasing non-specific toxicity. GENERAL SIGNIFICANCE: Doxorubicin-LTL functionalized liposomes promise to be useful in the development of new cancer chemotherapy protocols.


Assuntos
Proliferação de Células/efeitos dos fármacos , Fabaceae/metabolismo , Lectinas/administração & dosagem , Lectinas/química , Lipossomos/administração & dosagem , Lipossomos/química , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Química Farmacêutica/métodos , Citoplasma/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Sistemas de Liberação de Medicamentos/métodos , Epitopos/administração & dosagem , Epitopos/química , Humanos , Lisossomos/efeitos dos fármacos , Melanoma Experimental/tratamento farmacológico , Camundongos
19.
PLoS One ; 11(12): e0168727, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28036325

RESUMO

Iron oxide nanoparticles (NPs) have been proposed for many biomedical applications as in vivo imaging and drug delivery in cancer treatment, but their toxicity is an ongoing concern. When NPs are intravenously administered, the endothelium represents the first barrier to tissue diffusion/penetration. However, there is little information about the biological effects of NPs on endothelial cells. In this work we showed that cobalt-ferrite (CoFe2O4) NPs affect endothelial cell integrity by increasing permeability, oxidative stress, inflammatory profile and by inducing cytoskeletal modifications. To overcome these problems, NPs have be loaded into biocompatible gels to form nanocomposite hybrid material (polysaccharide hydrogels containing magnetic NPs) that can be further conjugated with anticancer drugs to allow their release close to the target. The organic part of hybrid biomaterials is a carboxymethylcellulose (CMC) polymer, while the inorganic part consists of CoFe2O4 NPs coated with (3-aminopropyl)trimethoxysilane. The biological activity of these hybrid hydrogels was evaluated in vitro and in vivo. Our findings showed that hybrid hydrogels, instead of NPs alone, were not toxic on endothelial, stromal and epithelial cells, safe and biodegradable in vivo. In conclusion, biohydrogels with paramagnetic NPs as cross-linkers can be further exploited for antitumor drug loading and delivery systems.


Assuntos
Cobalto/farmacologia , Células Endoteliais/efeitos dos fármacos , Compostos Férricos/farmacologia , Hidrogéis/farmacologia , Nanopartículas/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacologia , Materiais Biocompatíveis/química , Carboximetilcelulose Sódica/química , Linhagem Celular , Cobalto/química , Sistemas de Liberação de Medicamentos/métodos , Compostos Férricos/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Hidrogéis/química , Inflamação/tratamento farmacológico , Nanopartículas/química , Estresse Oxidativo/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos
20.
Sci Rep ; 6: 31295, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27498819

RESUMO

The angiogenic properties of VEGF are mediated through the binding of VEGF to its receptor VEGFR2. The VEGF/VEGFR interface is constituted by a discontinuous binding region distributed on both VEGF monomers. We attempted to reproduce this discontinuous binding site by covalently linking into a single molecular entity two VEGF segments involved in receptor recognition. We designed and synthesized by chemical ligation a set of peptides differing in length and flexibility of the molecular linker joining the two VEGF segments. The biological activity of the peptides was characterized in vitro and in vivo showing a VEGF-like activity. The most biologically active mini-VEGF was further analyzed by NMR to determine the atomic details of its interaction with the receptor.


Assuntos
Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Sítios de Ligação , Movimento Celular , Proliferação de Células , Dicroísmo Circular , Cristalografia por Raios X , Células Endoteliais da Veia Umbilical Humana , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica , Peptídeos/química , Fosforilação , Ligação Proteica , Estrutura Secundária de Proteína , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...