Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Cycle ; 7(24): 3908-14, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19066453

RESUMO

The Wnt pathway is a key regulator of embryonic development and stem cell self-renewal, and hyperactivation of the Wnt signalling is associated with many human cancers. The central player in the Wnt pathway is beta-catenin, a cytoplasmic protein whose function is tightly controlled by ubiquitination and degradation, however the precise regulation of beta-catenin stability/degradation remains elusive. Here, we report a new mechanism of beta-catenin ubiquitination acting in the context of chromatin. This mechanism is mediated by the histone acetyltransferase (HAT) complex component TRRAP and Skp1, an invariable component of the Skp-Cullin-F-box (SCF) ubiquitin ligase complex. TRRAP interacts with Skp1/SCF and mediates its recruitment to beta-catenin target promoter in chromatin. TRRAP deletion leads to a reduced level of beta-catenin ubiquitination, lower degradation rate and accumulation of beta-catenin protein. Furthermore, recruitment of Skp1 to chromatin and ubiquitination of chromatin-bound beta-catenin are abolished upon TRRAP knock-down, leading to an abnormal retention of beta-catenin at the chromatin and concomitant hyperactivation of the canonical Wnt pathway. These results demonstrate that there is a distinct regulatory mechanism for beta-catenin ubiquitination/ destruction acting in the nucleus which functionally complements cytoplasmic destruction of beta-catenin and prevents its oncogenic stabilization and chronic activation of the canonical Wnt pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cromatina/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitinação , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Linhagem Celular , Técnicas de Silenciamento de Genes , Histona Acetiltransferases/metabolismo , Humanos , Modelos Biológicos , RNA Interferente Pequeno , Proteínas Quinases Associadas a Fase S/metabolismo , Transdução de Sinais
2.
EMBO J ; 26(7): 1843-52, 2007 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-17347652

RESUMO

Intracellular budding is a developmentally regulated type of cell division common to many fungi and protists. In Saccaromyces cerevisiae, intracellular budding requires the de novo assembly of membranes, the prospore membranes (PSMs) and occurs during spore formation in meiosis. Ssp1p is a sporulation-specific protein that has previously been shown to localize to secretory vesicles and to recruit the leading edge protein coat (LEP coat) proteins to the opening of the PSM. Here, we show that Ssp1p is a multidomain protein with distinct domains important for PI(4,5)P(2) binding, binding to secretory vesicles and inhibition of vesicle fusion, interaction with LEP coat components and that it is subject to sumoylation and degradation. We found non-essential roles for Ssp1p on the level of vesicle transport and an essential function of Ssp1p to regulate the opening of the PSM. Together, our results indicate that Ssp1p has a domain architecture that resembles to some extent the septin class of proteins, and that the regulated removal of Ssp1p from the PSM is the major step underlying cytokinesis in yeast sporulation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Membrana Celular/metabolismo , Citocinese , Meiose , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Esporos Fúngicos/metabolismo , Proteínas de Ciclo Celular/química , Exocitose , Metabolismo dos Lipídeos , Mitose , Modelos Biológicos , Mutação/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Transporte Proteico , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Vesículas Secretórias/ultraestrutura , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo
3.
Cell Cycle ; 5(7): 696-701, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16582631

RESUMO

Epigenetic changes are important etiological factors of human cancer. Epigenetic information in chromatin (known as 'histone code') is a fascinating feature used by cells to extend and modulate the genetic (DNA) code. The histone code is thus proposed to be 'read' by cells to regulate accessibility to, and functions of, chromatin DNA. While the role of the epigenetic code involving chromatin modifying/remodeling complexes in transcriptional regulation is well established, it is only recently that these mechanisms have been implicated in DNA damage detection and DNA repair. However, how the components of the DNA damage sensing and repair machinery gain access to broken DNA in compacted chromatin remains a mystery. Recent studies provide important insights into DNA damage- and repair-specific modifications to histones and shed light on how the epigenetic code controls DNA repair.


Assuntos
Cromatina/genética , Reparo do DNA/genética , Epigênese Genética/genética , Animais , Montagem e Desmontagem da Cromatina/genética , Histonas/metabolismo , Processamento de Proteína Pós-Traducional/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA