Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Wetlands (Wilmington) ; 43(8): 105, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38037553

RESUMO

Wetlands cover a small portion of the world, but have disproportionate influence on global carbon (C) sequestration, carbon dioxide and methane emissions, and aquatic C fluxes. However, the underlying biogeochemical processes that affect wetland C pools and fluxes are complex and dynamic, making measurements of wetland C challenging. Over decades of research, many observational, experimental, and analytical approaches have been developed to understand and quantify pools and fluxes of wetland C. Sampling approaches range in their representation of wetland C from short to long timeframes and local to landscape spatial scales. This review summarizes common and cutting-edge methodological approaches for quantifying wetland C pools and fluxes. We first define each of the major C pools and fluxes and provide rationale for their importance to wetland C dynamics. For each approach, we clarify what component of wetland C is measured and its spatial and temporal representativeness and constraints. We describe practical considerations for each approach, such as where and when an approach is typically used, who can conduct the measurements (expertise, training requirements), and how approaches are conducted, including considerations on equipment complexity and costs. Finally, we review key covariates and ancillary measurements that enhance the interpretation of findings and facilitate model development. The protocols that we describe to measure soil, water, vegetation, and gases are also relevant for related disciplines such as ecology. Improved quality and consistency of data collection and reporting across studies will help reduce global uncertainties and develop management strategies to use wetlands as nature-based climate solutions. Supplementary Information: The online version contains supplementary material available at 10.1007/s13157-023-01722-2.

2.
Anthropocene Rev ; 10(1): 146-176, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37255737

RESUMO

An annually laminated succession in Crawford Lake, Ontario, Canada is proposed for the Global boundary Stratotype Section and Point (GSSP) to define the Anthropocene as a series/epoch with a base dated at 1950 CE. Varve couplets of organic matter capped by calcite precipitated each summer in alkaline surface waters reflect environmental change at global to local scales. Spheroidal carbonaceous particles and nitrogen isotopes record an increase in fossil fuel combustion in the early 1950s, coinciding with early fallout from nuclear and thermonuclear testing - 239+240Pu and 14C:12C, the latter more than compensating for the effects of old carbon in this dolomitic basin. Rapid industrial expansion in the North American Great Lakes region led to enhanced leaching of terrigenous elements by acid precipitation during the Great Acceleration, and calcite precipitation was reduced, producing thin calcite laminae around the GSSP that is marked by a sharp decline in elm pollen (Dutch Elm disease). The lack of bioturbation in well-oxygenated bottom waters, supported by the absence of fossil pigments from obligately anaerobic purple sulfur bacteria, is attributed to elevated salinities and high alkalinity below the chemocline. This aerobic depositional environment, highly unusual in a meromictic lake, inhibits the mobilization of Pu, the proposed primary stratigraphic guide for the Anthropocene.

3.
Nat Commun ; 13(1): 4959, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002465

RESUMO

High-latitude peatlands are changing rapidly in response to climate change, including permafrost thaw. Here, we reconstruct hydrological conditions since the seventeenth century using testate amoeba data from 103 high-latitude peat archives. We show that 54% of the peatlands have been drying and 32% have been wetting over this period, illustrating the complex ecohydrological dynamics of high latitude peatlands and their highly uncertain responses to a warming climate.


Assuntos
Amoeba , Pergelissolo , Mudança Climática , Hidrologia , Solo
4.
Sci Total Environ ; 784: 147155, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34088044

RESUMO

We report the first Canadian Arctic-wide study of anthropogenic particles (APs, >125 µm), including microfibers (synthetic, semi-synthetic and anthropogenically modified cellulose) and microplastics, in marine sediments from 14 sites. Samples from across the Canadian Arctic were collected between 2014 and 2017 from onboard the CCGS Amundsen. Samples were processed using density separation with calcium chloride (CaCl2). APs >125 µm were identified and a subset (22%) were characterized using Raman spectroscopy. Following blank-correction, microfiber numbers were corrected using Raman data in a novel approach to subtract possible "natural" cellulose microfibers with no anthropogenic signal via Raman spectroscopy, to estimate the proportion of cellulose microfibers that are of confirmed anthropogenic origin. Of all microfibers examined by Raman spectroscopy, 51% were anthropogenic cellulose, 11% were synthetic polymers, and 7% were extruded fibers emitting a dye signal. The remaining 31% of microfibers were identified as cellulosic but could not be confirmed as anthropogenic and thus were excluded from the final concentrations. Concentrations of confirmed APs in sediments ranged from 0.6 to 4.7 particles g-1 dry weight (dw). Microfibers comprised 82% of all APs, followed by fragments at 15%. Total microfiber concentrations ranged from 0.4 to 3.2 microfibers g-1 dw, while microplastic (fragments, foams, films and spheres) concentrations ranged from 0 to 1.6 microplastics g-1 dw. These concentrations may exceed those recorded in urban areas near point sources of plastic pollution, and indicate that the Canadian Arctic is a sink for APs, including anthropogenic cellulose fibers. Overall, we provide an important benchmark of AP contamination in Canadian Arctic marine sediments against which to measure temporal trends, including the effects of source reduction strategies and climate change, both of which will likely alter patterns of accumulation of anthropogenic particles.

5.
Proc Natl Acad Sci U S A ; 116(11): 4822-4827, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30804186

RESUMO

Glacial-interglacial variations in CO2 and methane in polar ice cores have been attributed, in part, to changes in global wetland extent, but the wetland distribution before the Last Glacial Maximum (LGM, 21 ka to 18 ka) remains virtually unknown. We present a study of global peatland extent and carbon (C) stocks through the last glacial cycle (130 ka to present) using a newly compiled database of 1,063 detailed stratigraphic records of peat deposits buried by mineral sediments, as well as a global peatland model. Quantitative agreement between modeling and observations shows extensive peat accumulation before the LGM in northern latitudes (>40°N), particularly during warmer periods including the last interglacial (130 ka to 116 ka, MIS 5e) and the interstadial (57 ka to 29 ka, MIS 3). During cooling periods of glacial advance and permafrost formation, the burial of northern peatlands by glaciers and mineral sediments decreased active peatland extent, thickness, and modeled C stocks by 70 to 90% from warmer times. Tropical peatland extent and C stocks show little temporal variation throughout the study period. While the increased burial of northern peats was correlated with cooling periods, the burial of tropical peat was predominately driven by changes in sea level and regional hydrology. Peat burial by mineral sediments represents a mechanism for long-term terrestrial C storage in the Earth system. These results show that northern peatlands accumulate significant C stocks during warmer times, indicating their potential for C sequestration during the warming Anthropocene.

6.
PLoS One ; 13(8): e0202214, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30138366

RESUMO

This paper investigates suitability of supervised machine learning classification methods for classification of biomes using pollen datasets. We assign modern pollen samples from Africa and Arabia to five biome classes using a previously published African pollen dataset and a global ecosystem classification scheme. To test the applicability of traditional and machine-learning based classification models for the task of biome prediction from high dimensional modern pollen data, we train a total of eight classification models, including Linear Discriminant Analysis, Logistic Regression, Naïve Bayes, K-Nearest Neighbors, Classification Decision Tree, Random Forest, Neural Network, and Support Vector Machine. The ability of each model to predict biomes from pollen data is statistically tested on an independent test set. The Random Forest classifier outperforms other models in its ability correctly classify biomes given pollen data. Out of the eight models, the Random Forest classifier scores highest on all of the metrics used for model evaluations and is able to predict four out of five biome classes to high degree of accuracy, including arid, montane, tropical and subtropical closed and open systems, e.g. forests and savanna/grassland. The model has the potential for accurate reconstructions of past biomes and awaits application to fossil pollen sequences. The Random Forest model may be used to investigate vegetation changes on both long and short time scales, e.g. during glacial and interglacial cycles, or more recent and abrupt climatic anomalies like the African Humid Period. Such applications may contribute to a better understanding of past shifts in vegetation cover and ultimately provide valuable information on drivers of climate change.


Assuntos
Ecossistema , Pólen/classificação , Aprendizado de Máquina Supervisionado , África , Algoritmos , Teorema de Bayes , Mudança Climática , Árvores de Decisões , Análise Discriminante , Fósseis , Modelos Logísticos , Modelos Estatísticos , Redes Neurais de Computação , Estatísticas não Paramétricas , Máquina de Vetores de Suporte
7.
Carbon Balance Manag ; 13(1): 6, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29679173

RESUMO

BACKGROUND: Natural wetlands can mitigate ongoing increases in atmospheric carbon by storing any net balance of organic carbon (peat) between plant production (carbon uptake) and microbial decomposition (carbon release). Efforts are ongoing to quantify peat carbon stored in global wetlands, with considerable focus given to boreal/subarctic peatlands and tropical peat swamps. Many wetlands in temperate latitudes have been transformed to anthropogenic landscapes, making it difficult to investigate their natural/historic carbon balance. The remaining temperate swamps and marshes are often treated as mineral soil wetlands and assumed to not accumulate peat. Southern Ontario in the Laurentian Great Lakes drainage basin was formerly a wetland-rich region that has undergone significant land use change since European settlement. RESULTS: This study uses southern Ontario as a case study to assess the degree to which temperate regions could have stored substantial carbon if it had not been for widespread anthropogenic land cover change. Here, we reconstruct the full extent and distribution of natural wetlands using two wetland maps, one for pre-settlement conditions (prior to 1850 CE) and the other for modern-day patterns of land use (2011 CE). We found that the pre-settlement wetland cover decreased by about 56% with the loss most significant for marshes as only 11% of predicted pre-settlement marshland area remains today. We estimate that pre-settlement wetlands held up to ~ 3.3 Pg of carbon relative to ~ 1.3 Pg for present-day (total across all wetland classes). CONCLUSIONS: By not considering the recent carbon loss of temperate wetlands, we may be underestimating the wetland carbon sink in the pre-industrial carbon cycle. Future work is needed to better track the conversion of natural wetlands globally and the associated carbon stock change.

8.
PLoS One ; 11(8): e0159937, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27532216

RESUMO

A Holocene lake sediment record spanning the past 7300 years from Wishart Lake in the Turkey Lakes Watershed in the Hemi-Boreal of central Ontario, Canada, was used to evaluate the potential drivers of long-term change in diatom assemblages at this site. An analysis of diatom assemblages found that benthic and epiphytic taxa dominated the mid-Holocene (7300-4000 cal yr BP), indicating shallow, oligotrophic, circum-neutral conditions, with macrophytes present. A significant shift in diatom assemblages towards more planktonic species (mainly Cyclotella sensu lato, but also several species of Aulacoseira, and Tabellaria flocculosa) occurred ~4000 cal yr BP. This change likely reflects an increase in lake level, coincident with the onset of a more strongly positive moisture balance following the drier climates of the middle Holocene, established by numerous regional paleoclimate records. Pollen-inferred regional changes in vegetation around 4000 yrs BP, including an increase in Betula and other mesic taxa, may have also promoted changes in diatom assemblages through watershed processes mediated by the chemistry of runoff. A more recent significant change in limnological conditions is marked by further increases in Cyclotella sensu lato beginning in the late 19th century, synchronous with the Ambrosia pollen rise and increases in sediment bulk density, signaling regional and local land clearance at the time of Euro-Canadian settlement (1880 AD). In contrast to the mid-Holocene increase in planktonic diatoms, the modern increase in Cyclotella sensu lato likely indicates a response to land use and vegetation change, and erosion from the watershed, rather than a further increase in water level. The results from Wishart Lake illustrate the close connection between paleoclimate change, regional vegetation, watershed processes, and diatom assemblages and also provides insight into the controls on abundance of Cyclotella sensu lato, a diatom taxonomic group which has shown significant increases and complex dynamics in the post-industrial era in lakes spanning temperate to Arctic regions.


Assuntos
Diatomáceas/classificação , Diatomáceas/isolamento & purificação , Fósseis , Sedimentos Geológicos/análise , Plâncton/classificação , Betula/classificação , Clima , Ecossistema , Lagos , Ontário
9.
Nat Commun ; 5: 4078, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24916043

RESUMO

Peatlands have influenced Holocene carbon (C) cycling by storing atmospheric C and releasing methane (CH4). Yet, our understanding of contributions from the world's second largest peatland, the Hudson Bay Lowlands (HBL), Canada, to peat-climate-C-dynamics is constrained by the paucity of dated peat records and regional C-data. Here we examine HBL peatland development in relation to Holocene C-dynamics. We show that peat initiation in the HBL is tightly coupled with glacial isostatic adjustment (GIA) through most of the record, and occurred within suitable climatic conditions for peatland development. HBL peatlands initiated most intensively in the mid-Holocene, when GIA was most rapid and climate was cooler and drier. As the peat mass developed, we estimate that the HBL potentially released 1-7 Tg CH4 per year during the late Holocene. Our results indicate that the HBL currently stores a C-pool of ~30 Pg C and provide support for a peatland-derived CH4 contribution to the late Holocene atmosphere.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...