Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 7(12)2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35579952

RESUMO

Macrophages play a crucial role in the inflammatory response to the human stomach pathogen Helicobacter pylori, which infects half of the world's population and causes gastric cancer. Recent studies have highlighted the importance of macrophage immunometabolism in their activation state and function. We have demonstrated that the cysteine-producing enzyme cystathionine γ-lyase (CTH) is upregulated in humans and mice with H. pylori infection. Here, we show that induction of CTH in macrophages by H. pylori promoted persistent inflammation. Cth-/- mice had reduced macrophage and T cell activation in H. pylori-infected tissues, an altered metabolome, and decreased enrichment of immune-associated gene networks, culminating in decreased H. pylori-induced gastritis. CTH is downstream of the proposed antiinflammatory molecule, S-adenosylmethionine (SAM). Whereas Cth-/- mice exhibited gastric SAM accumulation, WT mice treated with SAM did not display protection against H. pylori-induced inflammation. Instead, we demonstrated that Cth-deficient macrophages exhibited alterations in the proteome, decreased NF-κB activation, diminished expression of macrophage activation markers, and impaired oxidative phosphorylation and glycolysis. Thus, through altering cellular respiration, CTH is a key enhancer of macrophage activation, contributing to a pathogenic inflammatory response that is the universal precursor for the development of H. pylori-induced gastric disease.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Animais , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos
2.
Gastroenterology ; 162(3): 813-827.e8, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34767785

RESUMO

BACKGROUND & AIMS: Because inflammatory bowel disease is increasing worldwide and can lead to colitis-associated carcinoma (CAC), new interventions are needed. We have shown that spermine oxidase (SMOX), which generates spermidine (Spd), regulates colitis. Here we determined whether Spd treatment reduces colitis and carcinogenesis. METHODS: SMOX was quantified in human colitis and associated dysplasia using quantitative reverse-transcription polymerase chain reaction and immunohistochemistry. We used wild-type (WT) and Smox-/- C57BL/6 mice treated with dextran sulfate sodium (DSS) or azoxymethane (AOM)-DSS as models of colitis and CAC, respectively. Mice with epithelial-specific deletion of Apc were used as a model of sporadic colon cancer. Animals were supplemented or not with Spd in the drinking water. Colonic polyamines, inflammation, tumorigenesis, transcriptomes, and microbiomes were assessed. RESULTS: SMOX messenger RNA levels were decreased in human ulcerative colitis tissues and inversely correlated with disease activity, and SMOX protein was reduced in colitis-associated dysplasia. DSS colitis and AOM-DSS-induced dysplasia and tumorigenesis were worsened in Smox-/- vs WT mice and improved in both genotypes with Spd. Tumor development caused by Apc deletion was also reduced by Spd. Smox deletion and AOM-DSS treatment were both strongly associated with increased expression of α-defensins, which was reduced by Spd. A shift in the microbiome, with reduced abundance of Prevotella and increased Proteobacteria and Deferribacteres, occurred in Smox-/- mice and was reversed with Spd. CONCLUSIONS: Loss of SMOX is associated with exacerbated colitis and CAC, increased α-defensin expression, and dysbiosis of the microbiome. Spd supplementation reverses these phenotypes, indicating that it has potential as an adjunctive treatment for colitis and chemopreventive for colon carcinogenesis.


Assuntos
Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Colite/genética , Neoplasias do Colo/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Espermidina/uso terapêutico , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Azoximetano , Colite/induzido quimicamente , Colite/enzimologia , Colite/prevenção & controle , Colite Ulcerativa/enzimologia , Colite Ulcerativa/genética , Colo/enzimologia , Colo/patologia , Neoplasias do Colo/prevenção & controle , Sulfato de Dextrana , Microbioma Gastrointestinal/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mucosa Intestinal/enzimologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Lesões Pré-Cancerosas/enzimologia , Fatores de Proteção , RNA Mensageiro/metabolismo , Índice de Gravidade de Doença , Espermidina/metabolismo , Espermidina/farmacologia , Redução de Peso/efeitos dos fármacos , alfa-Defensinas/genética , alfa-Defensinas/metabolismo , Poliamina Oxidase
3.
Gastroenterology ; 160(4): 1256-1268.e9, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33189701

RESUMO

BACKGROUND & AIMS: Inflammation in the gastrointestinal tract may lead to the development of cancer. Dicarbonyl electrophiles, such as isolevuglandins (isoLGs), are generated from lipid peroxidation during the inflammatory response and form covalent adducts with amine-containing macromolecules. Thus, we sought to determine the role of dicarbonyl electrophiles in inflammation-associated carcinogenesis. METHODS: The formation of isoLG adducts was analyzed in the gastric tissues of patients infected with Helicobacter pylori from gastritis to precancerous intestinal metaplasia, in human gastric organoids, and in patients with colitis and colitis-associated carcinoma (CAC). The effect on cancer development of a potent scavenger of dicarbonyl electrophiles, 5-ethyl-2-hydroxybenzylamine (EtHOBA), was determined in transgenic FVB/N insulin-gastrin (INS-GAS) mice and Mongolian gerbils as models of H pylori-induced carcinogenesis and in C57BL/6 mice treated with azoxymethane-dextran sulfate sodium as a model of CAC. The effect of EtHOBA on mutations in gastric epithelial cells of H pylori-infected INS-GAS mice was assessed by whole-exome sequencing. RESULTS: We show increased isoLG adducts in gastric epithelial cell nuclei in patients with gastritis and intestinal metaplasia and in human gastric organoids infected with H pylori. EtHOBA inhibited gastric carcinoma in infected INS-GAS mice and gerbils and attenuated isoLG adducts, DNA damage, and somatic mutation frequency. Additionally, isoLG adducts were elevated in tissues from patients with colitis, colitis-associated dysplasia, and CAC as well as in dysplastic tumors of C57BL/6 mice treated with azoxymethane-dextran sulfate sodium. In this model, EtHOBA significantly reduced adduct formation, tumorigenesis, and dysplasia severity. CONCLUSIONS: Dicarbonyl electrophiles represent a link between inflammation and somatic genomic alterations and are thus key targets for cancer chemoprevention.


Assuntos
Transformação Celular Neoplásica/imunologia , Neoplasias Associadas a Colite/imunologia , Lipídeos/imunologia , Lesões Pré-Cancerosas/imunologia , Neoplasias Gástricas/imunologia , Animais , Benzilaminas/farmacologia , Benzilaminas/uso terapêutico , Núcleo Celular/metabolismo , Transformação Celular Neoplásica/efeitos dos fármacos , Neoplasias Associadas a Colite/microbiologia , Neoplasias Associadas a Colite/patologia , Neoplasias Associadas a Colite/prevenção & controle , Modelos Animais de Doenças , Células Epiteliais , Mucosa Gástrica/citologia , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/imunologia , Mucosa Gástrica/patologia , Gastrite/imunologia , Gastrite/microbiologia , Gastrite/patologia , Gerbillinae , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Helicobacter pylori/imunologia , Helicobacter pylori/isolamento & purificação , Humanos , Lipídeos/antagonistas & inibidores , Metaplasia/imunologia , Metaplasia/microbiologia , Metaplasia/patologia , Camundongos , Camundongos Transgênicos , Organoides , Lesões Pré-Cancerosas/tratamento farmacológico , Lesões Pré-Cancerosas/microbiologia , Lesões Pré-Cancerosas/patologia , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia , Neoplasias Gástricas/prevenção & controle
4.
Cell Rep ; 33(11): 108510, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33326776

RESUMO

Innate responses of myeloid cells defend against pathogenic bacteria via inducible effectors. Deoxyhypusine synthase (DHPS) catalyzes the transfer of the N-moiety of spermidine to the lysine-50 residue of eukaryotic translation initiation factor 5A (EIF5A) to form the amino acid hypusine. Hypusinated EIF5A (EIF5AHyp) transports specific mRNAs to ribosomes for translation. We show that DHPS is induced in macrophages by two gastrointestinal pathogens, Helicobacter pylori and Citrobacter rodentium, resulting in enhanced hypusination of EIF5A. EIF5AHyp was also increased in gastric macrophages from patients with H. pylori gastritis. Furthermore, we identify the bacteria-induced immune effectors regulated by hypusination. This set of proteins includes essential constituents of antimicrobial response and autophagy. Mice with myeloid cell-specific deletion of Dhps exhibit reduced EIF5AHyp in macrophages and increased bacterial burden and inflammation. Thus, regulation of translation through hypusination is a critical hallmark of the defense of eukaryotic hosts against pathogenic bacteria.


Assuntos
Anti-Infecciosos/uso terapêutico , Lisina/análogos & derivados , Macrófagos/imunologia , Animais , Anti-Infecciosos/farmacologia , Modelos Animais de Doenças , Humanos , Lisina/uso terapêutico , Camundongos
5.
Oncogene ; 39(22): 4465-4474, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32350444

RESUMO

Helicobacter pylori infection is the main risk factor for the development of gastric cancer, the third leading cause of cancer death worldwide. H. pylori colonizes the human gastric mucosa and persists for decades. The inflammatory response is ineffective in clearing the infection, leading to disease progression that may result in gastric adenocarcinoma. We have shown that polyamines are regulators of the host response to H. pylori, and that spermine oxidase (SMOX), which metabolizes the polyamine spermine into spermidine plus H2O2, is associated with increased human gastric cancer risk. We now used a molecular approach to directly address the role of SMOX, and demonstrate that Smox-deficient mice exhibit significant reductions of gastric spermidine levels and H. pylori-induced inflammation. Proteomic analysis revealed that cancer was the most significantly altered functional pathway in Smox-/- gastric organoids. Moreover, there was also less DNA damage and ß-catenin activation in H. pylori-infected Smox-/- mice or gastric organoids, compared to infected wild-type animals or gastroids. The link between SMOX and ß-catenin activation was confirmed in human gastric organoids that were treated with a novel SMOX inhibitor. These findings indicate that SMOX promotes H. pylori-induced carcinogenesis by causing inflammation, DNA damage, and activation of ß-catenin signaling.


Assuntos
Adenocarcinoma/etiologia , Dano ao DNA , Gastrite/enzimologia , Infecções por Helicobacter/enzimologia , Helicobacter pylori/patogenicidade , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/fisiologia , Espermina/metabolismo , Neoplasias Gástricas/etiologia , Adenocarcinoma/microbiologia , Animais , Transformação Celular Neoplásica , Gastrite/genética , Gastrite/microbiologia , Gastrite/patologia , Infecções por Helicobacter/genética , Infecções por Helicobacter/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Organoides , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/deficiência , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Proteoma , RNA Mensageiro/biossíntese , Transdução de Sinais , Espermidina/biossíntese , Neoplasias Gástricas/microbiologia , beta Catenina/fisiologia , Poliamina Oxidase
6.
mBio ; 10(5)2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31662455

RESUMO

The reverse transsulfuration pathway is the major route for the metabolism of sulfur-containing amino acids. The role of this metabolic pathway in macrophage response and function is unknown. We show that the enzyme cystathionine γ-lyase (CTH) is induced in macrophages infected with pathogenic bacteria through signaling involving phosphatidylinositol 3-kinase (PI3K)/MTOR and the transcription factor SP1. This results in the synthesis of cystathionine, which facilitates the survival of pathogens within myeloid cells. Our data demonstrate that the expression of CTH leads to defective macrophage activation by (i) dysregulation of polyamine metabolism by depletion of S-adenosylmethionine, resulting in immunosuppressive putrescine accumulation and inhibition of spermidine and spermine synthesis, and (ii) increased histone H3K9, H3K27, and H3K36 di/trimethylation, which is associated with gene expression silencing. Thus, CTH is a pivotal enzyme of the innate immune response that disrupts host defense. The induction of the reverse transsulfuration pathway by bacterial pathogens can be considered an unrecognized mechanism for immune escape.IMPORTANCE Macrophages are professional immune cells that ingest and kill microbes. In this study, we show that different pathogenic bacteria induce the expression of cystathionine γ-lyase (CTH) in macrophages. This enzyme is involved in a metabolic pathway called the reverse transsulfuration pathway, which leads to the production of numerous metabolites, including cystathionine. Phagocytized bacteria use cystathionine to better survive in macrophages. In addition, the induction of CTH results in dysregulation of the metabolism of polyamines, which in turn dampens the proinflammatory response of macrophages. In conclusion, pathogenic bacteria can evade the host immune response by inducing CTH in macrophages.


Assuntos
Bactérias/imunologia , Bactérias/metabolismo , Imunidade Inata , Macrófagos/metabolismo , Redes e Vias Metabólicas/fisiologia , Enxofre/metabolismo , Animais , Bactérias/patogenicidade , Inativação Gênica , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Histonas/metabolismo , Humanos , Evasão da Resposta Imune , Imunoglobulinas , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Poliaminas/metabolismo , Células RAW 264.7 , Espermidina/metabolismo , Espermina/metabolismo , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...