Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiat Res ; 199(6): 535-555, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37310880

RESUMO

Tools for radiation exposure reconstruction are required to support the medical management of radiation victims in radiological or nuclear incidents. Different biological and physical dosimetry assays can be used for various exposure scenarios to estimate the dose of ionizing radiation a person has absorbed. Regular validation of the techniques through inter-laboratory comparisons (ILC) is essential to guarantee high quality results. In the current RENEB inter-laboratory comparison, the performance quality of established cytogenetic assays [dicentric chromosome assay (DCA), cytokinesis-block micronucleus assay (CBMN), stable chromosomal translocation assay (FISH) and premature chromosome condensation assay (PCC)] was tested in comparison to molecular biological assays [gamma-H2AX foci (gH2AX), gene expression (GE)] and physical dosimetry-based assays [electron paramagnetic resonance (EPR), optically or thermally stimulated luminescence (LUM)]. Three blinded coded samples (e.g., blood, enamel or mobiles) were exposed to 0, 1.2 or 3.5 Gy X-ray reference doses (240 kVp, 1 Gy/min). These doses roughly correspond to clinically relevant groups of unexposed to low exposed (0-1 Gy), moderately exposed (1-2 Gy, no severe acute health effects expected) and highly exposed individuals (>2 Gy, requiring early intensive medical care). In the frame of the current RENEB inter-laboratory comparison, samples were sent to 86 specialized teams in 46 organizations from 27 nations for dose estimation and identification of three clinically relevant groups. The time for sending early crude reports and more precise reports was documented for each laboratory and assay where possible. The quality of dose estimates was analyzed with three different levels of granularity, 1. by calculating the frequency of correctly reported clinically relevant dose categories, 2. by determining the number of dose estimates within the uncertainty intervals recommended for triage dosimetry (±0.5 Gy or ±1.0 Gy for doses <2.5 Gy or >2.5 Gy), and 3. by calculating the absolute difference (AD) of estimated doses relative to the reference doses. In total, 554 dose estimates were submitted within the 6-week period given before the exercise was closed. For samples processed with the highest priority, earliest dose estimates/categories were reported within 5-10 h of receipt for GE, gH2AX, LUM, EPR, 2-3 days for DCA, CBMN and within 6-7 days for the FISH assay. For the unirradiated control sample, the categorization in the correct clinically relevant group (0-1 Gy) as well as the allocation to the triage uncertainty interval was, with the exception of a few outliers, successfully performed for all assays. For the 3.5 Gy sample the percentage of correct classifications to the clinically relevant group (≥2 Gy) was between 89-100% for all assays, with the exception of gH2AX. For the 1.2 Gy sample, an exact allocation to the clinically relevant group was more difficult and 0-50% or 0-48% of the estimates were wrongly classified into the lowest or highest dose categories, respectively. For the irradiated samples, the correct allocation to the triage uncertainty intervals varied considerably between assays for the 1.2 Gy (29-76%) and 3.5 Gy (17-100%) samples. While a systematic shift towards higher doses was observed for the cytogenetic-based assays, extreme outliers exceeding the reference doses 2-6 fold were observed for EPR, FISH and GE assays. These outliers were related to a particular material examined (tooth enamel for EPR assay, reported as kerma in enamel, but when converted into the proper quantity, i.e. to kerma in air, expected dose estimates could be recalculated in most cases), the level of experience of the teams (FISH) and methodological uncertainties (GE). This was the first RENEB ILC where everything, from blood sampling to irradiation and shipment of the samples, was organized and realized at the same institution, for several biological and physical retrospective dosimetry assays. Almost all assays appeared comparably applicable for the identification of unexposed and highly exposed individuals and the allocation of medical relevant groups, with the latter requiring medical support for the acute radiation scenario simulated in this exercise. However, extreme outliers or a systematic shift of dose estimates have been observed for some assays. Possible reasons will be discussed in the assay specific papers of this special issue. In summary, this ILC clearly demonstrates the need to conduct regular exercises to identify research needs, but also to identify technical problems and to optimize the design of future ILCs.


Assuntos
Bioensaio , Coleta de Amostras Sanguíneas , Estudos Retrospectivos , Citocinese , Espectroscopia de Ressonância de Spin Eletrônica
2.
Radiat Res ; 199(6): 571-582, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37057983

RESUMO

The goal of the RENEB inter-laboratory comparison 2021 exercise was to simulate a large-scale radiation accident involving a network of biodosimetry labs. Labs were required to perform their analyses using different biodosimetric assays in triage mode scoring and to rapidly report estimated radiation doses to the organizing institution. This article reports the results obtained with the cytokinesis-block micronucleus assay. Three test samples were exposed to blinded doses of 0, 1.2 and 3.5 Gy X-ray doses (240 kVp, 13 mA, ∼75 keV, 1 Gy/min). These doses belong to 3 triage categories of clinical relevance: a low dose category, for no exposure or exposures inferior to 1 Gy, requiring no direct treatment of subjects; a medium dose category, with doses ranging from 1 to 2 Gy, and a high dose category, after exposure to doses higher than 2 Gy, with the two latter requiring increasing medical attention. After irradiation the test samples (no. 1, no. 2 and no. 3) were sent by the organizing laboratory to 14 centers participating in the micronucleus assay exercise. Laboratories were asked to setup micronucleus cultures and to perform the micronucleus assay in triage mode, scoring 500 binucleated cells manually, or 1,000 binucleated cells in automated/semi-automated mode. One laboratory received no blood samples, but scored pictures from another lab. Based on their calibration curves, laboratories had to provide estimates of the administered doses. The accuracy of the reported dose estimates was further analyzed by the micronucleus assay lead. The micronucleus assay allowed classification of samples in the corresponding clinical triage categories (low, medium, high dose category) in 88% of cases (manual scoring, 88%; semi-automated scoring, 100%; automated scoring, 73%). Agreement between scoring laboratories, assessed by calculating the Fleiss' kappa, was excellent (100%) for semi-automated scoring, good (83%) for manual scoring and poor (53%) for fully automated scoring. Correct classification into triage scoring dose intervals (reference dose ±0.5 Gy for doses ≤2.5 Gy, or reference dose ±1 Gy for doses >2.5 Gy), recommended for triage biodosimetry, was obtained in 79% of cases (manual scoring, 73%; semi-automated scoring, 100%; automated scoring, 67%). The percentage of dose estimates whose 95% confidence intervals included the reference dose was 58% (manual scoring, 48%; semiautomated scoring, 72%; automated scoring, 60%). For the irradiated samples no. 2 and no. 3, a systematic shift towards higher dose estimations was observed. This was also noticed with the other cytogenetic assays in this intercomparison exercise. Accuracy of the rapid triage modality could be maintained when the number of manually scored cells was scaled down to 200 binucleated cells. In conclusion, the micronucleus assay, preferably performed in a semi-automated or manual scoring mode, is a reliable technique to perform rapid biodosimetry analysis in large-scale radiation emergencies.


Assuntos
Citocinese , Liberação Nociva de Radioativos , Humanos , Relação Dose-Resposta à Radiação , Citocinese/efeitos da radiação , Testes para Micronúcleos/métodos , Bioensaio/métodos , Radiometria/métodos
3.
Radiat Res ; 199(6): 556-570, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37018160

RESUMO

After large-scale radiation accidents where many individuals are suspected to be exposed to ionizing radiation, biological and physical retrospective dosimetry assays are important tools to aid clinical decision making by categorizing individuals into unexposed/minimally, moderately or highly exposed groups. Quality-controlled inter-laboratory comparisons of simulated accident scenarios are regularly performed in the frame of the European legal association RENEB (Running the European Network of Biological and Physical retrospective Dosimetry) to optimize international networking and emergency readiness in case of large-scale radiation events. In total 33 laboratories from 22 countries around the world participated in the current RENEB inter-laboratory comparison 2021 for the dicentric chromosome assay. Blood was irradiated in vitro with X rays (240 kVp, 13 mA, ∼75 keV, 1 Gy/min) to simulate an acute, homogeneous whole-body exposure. Three blood samples (no. 1: 0 Gy, no. 2: 1.2 Gy, no. 3: 3.5 Gy) were sent to each participant and the task was to culture samples, to prepare slides and to assess radiation doses based on the observed dicentric yields from 50 manually or 150 semi-automatically scored metaphases (triage mode scoring). Approximately two-thirds of the participants applied calibration curves from irradiations with γ rays and about 1/3 from irradiations with X rays with varying energies. The categorization of the samples in clinically relevant groups corresponding to individuals that were unexposed/minimally (0-1 Gy), moderately (1-2 Gy) or highly exposed (>2 Gy) was successfully performed by all participants for sample no. 1 and no. 3 and by ≥74% for sample no. 2. However, while most participants estimated a dose of exactly 0 Gy for the sham-irradiated sample, the precise dose estimates of the samples irradiated with doses >0 Gy were systematically higher than the corresponding reference doses and showed a median deviation of 0.5 Gy (sample no. 2) and 0.95 Gy (sample no. 3) for manual scoring. By converting doses estimated based on γ-ray calibration curves to X-ray doses of a comparable mean photon energy as used in this exercise, the median deviation decreased to 0.27 Gy (sample no. 2) and 0.6 Gy (sample no. 3). The main aim of biological dosimetry in the case of a large-scale event is the categorization of individuals into clinically relevant groups, to aid clinical decision making. This task was successfully performed by all participants for the 0 Gy and 3.5 Gy samples and by 74% (manual scoring) and 80% (semiautomatic scoring) for the 1.2 Gy sample. Due to the accuracy of the dicentric chromosome assay and the high number of participating laboratories, a systematic shift of the dose estimates could be revealed. Differences in radiation quality (X ray vs. γ ray) between the test samples and the applied dose effect curves can partly explain the systematic shift. There might be several additional reasons for the observed bias (e.g., donor effects, transport, experimental conditions or the irradiation setup) and the analysis of these reasons provides great opportunities for future research. The participation of laboratories from countries around the world gave the opportunity to compare the results on an international level.


Assuntos
Aberrações Cromossômicas , Liberação Nociva de Radioativos , Humanos , Estudos Retrospectivos , Radiometria/métodos , Bioensaio/métodos , Cromossomos , Relação Dose-Resposta à Radiação
4.
J Appl Toxicol ; 37(6): 758-771, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27995640

RESUMO

The ability of parabens to promote the appearance of multiple cancer hallmarks in breast epithelium cells provides grounds for regulatory review of the implication of the presence of parabens in human breast tissue. It is well documented that telomere dysfunction plays a significant role in the initiation of genomic instability during carcinogenesis in human breast cancer. In the present study, we evaluated the genotoxic effect of ethyl 4-hydroxybenzoate (ethyl-paraben), with and without metabolic activation (S9), in studies following OECD guidelines. We observed a significant increase in genotoxic damage using the Mouse Lymphoma Assay and in vitro micronucleus (MN) tests in the L5178Y cell line in the presence of S9 only after a short exposure. A high frequency of MN was observed in the TK6 cells after a short exposure (3 h) in the presence of S9 and a long exposure (26 h) without S9. We found significant increases in the MN frequency and induced chromosomal aberrations in the lymphocytes of only one donor after ethyl-paraben exposure in the presence of S9 after a short exposure. Cytogenetic characterization of the paraben-treated cells demonstrated telomere shortening associated with telomere loss and telomere deletions in L5178Y and TK6 cells and lymphocytes of the paraben sensitive-donor. In a control cohort of 68 human lymphocytes, telomere length and telomere aberrations were age-dependent and showed high inter-individual variation. This study is the first to link telomere shortening and the genotoxic effect of ethyl paraben in the presence of S9 and raises the possibility that telomere shortening may be a proxy for underlying inter-individual sensitivity to ethyl-paraben. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Micronúcleos com Defeito Cromossômico/induzido quimicamente , Mutagênicos/toxicidade , Parabenos/toxicidade , Encurtamento do Telômero/efeitos dos fármacos , Ativação Metabólica , Animais , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Humanos , Linfócitos/efeitos dos fármacos , Linfócitos/patologia , Camundongos , Micronúcleos com Defeito Cromossômico/estatística & dados numéricos , Microssomos Hepáticos/metabolismo , Ratos Sprague-Dawley
5.
Toxicol In Vitro ; 13(4-5): 693-700, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-20654536

RESUMO

The new strategies for development of pharmacologically interesting compounds pose some limitations for standard toxicity assessment approaches due to: (1) increase in the number of compounds to be tested and (2) decrease in the amount of substance available for testing. In vitro methods are thus the only way to overcome such limitations. In this communication we present a cell-based model, using primary rat hepatocyte cultures, which we have validated using 23 compounds of the MEIC list as well as several Synthélabo proprietary products, covering a wide range of therapeutic indications. Our results show that our in vitro model gives a sufficient prediction for general toxicity by the oral route of administration (up to 2-4 weeks of treatment) in the rat to aid in decisions during early development. We also suggest that the comparative evaluation of the different parameters of cell toxicity examined may point to potential organ-related toxicity which could be further studied either with more complex in vitro or in vivo models. In conclusion, our results show that cell-based models for toxicity can be used for general screening purposes to predict in vivo toxicity in the early development of new chemical entities.

6.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...