Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Analyst ; 147(14): 3248-3257, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35670418

RESUMO

Modern analytical techniques, including laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy, yield multidimensional data, which are most efficiently used in conjunction with chemometric techniques, including multi-block algorithms. In this study, we use several algorithms for the processing of laser-induced breakdown and Raman spectra of zooplankton organisms, which are found to accumulate lithium for an unknown reason. Correlations between elemental and molecular composition of zooplankton have been found. We studied 29 samples: crustaceans, arrow worms, and sea snails. The obtained spectra were examined by principal component analysis (PCA), non-negative matrix factorization (NMF), consensus PCA (CPCA), and analysis of common components and specific weights (CCSWA, or ComDim). LIBS spectra are more sensitive towards taxonometric differences than Raman spectra. All the algorithms gave similar results, although still differing in details. Data fusion revealed a number of relationships, including the correlation of Li with potassium (R = 0.83, n = 14), with Raman bands of carotenoids (R = 0.89, n = 11) and tryptophan (R = 0.94, n = 9). The correlations were most pronounced in light-coloured parts of the inhomogeneous biological material. Ratios of fatty acids are associated with Li concentration if above 200 mg kg-1. Valine is also related to the Li accumulation. Thus, it is shown that the combination of LIBS and Raman spectroscopy, followed by appropriate mathematical treatment, is a convenient tool for comprehensive studies of environmental objects.


Assuntos
Lasers , Análise Espectral Raman , Potássio , Análise de Componente Principal , Análise Espectral Raman/métodos
2.
Front Microbiol ; 10: 2731, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849883

RESUMO

Sedimentary black shale-hosted manganese carbonate and oxide ores were studied by high-resolution in situ detailed optical and cathodoluminescence microscopy, Raman spectroscopy, and FTIR spectroscopy to determine microbial contribution in metallogenesis. This study of the Urucum Mn deposit in Brazil is included as a case study for microbially mediated ore-forming processes. The results were compared and interpreted in a comparative way, and the data were elaborated by a complex, structural hierarchical method. The first syngenetic products of microbial enzymatic oxidation were ferrihydrite and lepidocrocite on the Fe side, and vernadite, todorokite, birnessite, and manganite on the Mn side, formed under obligatory oxic (Mn) and suboxic (Fe) conditions and close to neutral pH. Fe- and Mn-oxidizing bacteria played a basic role in metallogenesis based on microtextural features, bioindicator minerals, and embedded variable organic matter. Trace element content is determined by source of elements and microbial activity. The present Urucum (Brazil), Datangpo (China), and Úrkút (Hungary) deposits are the result of complex diagenetic processes, which include the decomposition and mineralization of cell and extracellular polymeric substance (EPS) of Fe and Mn bacteria and cyanobacteria. Heterotrophic cell colonies activated randomly in the microbialite sediment after burial in suboxic neutral/alkaline conditions, forming Mn carbonates and variable cation-bearing oxides side by side with lithification and stabilization of minerals. Deposits of variable geological ages and geographical occurrences show strong similarities and indicate two-step microbial metallogenesis: a primary chemolithoautotrophic, and a diagenetic heterotrophic microbial cycle, influenced strongly by mineralization of cells and EPSs. These processes perform a basic role in controlling major and trace element distribution in sedimentary environments on a global level and place biogeochemical constraints on the element content of natural waters, precipitation of minerals, and water contaminants.

3.
Artigo em Inglês | MEDLINE | ID: mdl-30930966

RESUMO

We report on the mineralogy, petrography, and oxygen isotopic compositions of primary olivine and plagioclase/feldspathic mesostases in chondrules and of secondary magnetite and fayalite in chondrules and matrix of an oxidized Bali-like CV3.1 carbonaceous chondrite, Kaba. In this meteorite, compositionally nearly pure fayalite (Fa98-100) associates with hedenbergite (Fs~50Wo~50), magnetite, and Fe,Ni-sulfides. There are several textural occurrences of this mineral paragenesis: (i) coarse-grained intergrowths in interchondrule matrix, (ii) veins starting at the opaque nodules in the peripheries of type I chondrules and crosscutting fine-grained rims around them, and (iii) rims overgrowing olivine of type I and type II chondrule fragments. Oxygen isotopic compositions of fayalite and magnetite are in disequilibrium with chondrule olivines. On a three-isotope oxygen diagram, δ17O vs. δ18O, compositions of olivine plot along primitive chondrule minerals (PCM) line having a slope of ~1.0; deviations from the terrestrial fractionation line, Δ17O = δ17O - 0.52 × Î´18O, range from ~-8‰ to ~-5‰. In contrast, fayalite and magnetite plot along mass-dependent fractionation line with a slope of ~0.5; their δ18O values range from -1 to ~+9‰; Δ17O is nearly constant (average ± 2SE = -1.5±1‰). Oxygen isotopic compositions of chondrule plagioclase and feldspathic mesostases are in disequilibrium with chondrule olivines: they deviate to the right from the PCM line by ~12‰ and plot close to the mass-dependent fractionation line defined by fayalite and magnetite. Based on the mineralogy, petrography, oxygen isotopic compositions of fayalite and magnetite, and the previously published thermodynamic analysis of the fayalite-bearing assemblages in ordinary and carbonaceous chondrites, we conclude that Kaba fayalite and magnetite formed during aqueous fluid-rock interaction at low water/rock ratio (0.1-0.2) and elevated temperatures (~200-300°C) on the CV chondrite parent asteroid. The Δ17O values of Kaba fayalite and magnetite (-1.5±1‰) correspond to Δ17O of aqueous fluid that operated on the CV chondrite parent asteroid and resulted in its alteration. Plagioclase and feldspathic mesostases in Kaba chondrules experienced postcrystallization oxygen isotopic exchange with this 16O-depleted fluid; olivine grains retained their original compositions acquired during chondrule melts crystallization. The inferred oxygen isotopic exchange in Kaba chondrules appear to have not affected their Al-Mg isotope systematics.

4.
J Environ Radioact ; 173: 58-69, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28011110

RESUMO

The research investigated three iron carbonate (siderite) sedimentary concretions from Nagykovácsi, Úri and Délegyháza, Hungary. To identify possible source rocks and effects of the glaze-like exposed surface of the concretions, we carried on comparative petrological, mineralogical, geochemical and isotopic studies. The samples were microbially mediated siderite concretions with embedded metamorphous and igneous mineral clasts, and had specific rim belts characterized by semi-concentric outer Fe-oxide layers, fluffy pyrite-rich outer belts and siderite inner parts. We investigated the cross section of the Fe-carbonate concretions by independent methodologies in order to identify their rim effects. Their surficial oxide layers showed evidence of degassing of the exposed surface caused most probably by elevated temperatures. The inner rim pyrite belt in the concretions excluded the possibility of a prolonged wet surface environment. Microtextural and mineralogical features did not support desert varnish formation. 10Be nuclide values of the Nagykovácsi and Uri concretions were far above the level of terrestrial in-situ cosmogenic nuclides, but they were consistent with the lowest levels for meteorites. Though the data were not conclusive to confirm any kind of known origin, they are contradictary, and open possibilities for a scenario of terrestrial meteorite origin.


Assuntos
Berílio/análise , Carbonatos/química , Compostos Férricos/química , Monitoramento de Radiação , Sedimentos Geológicos/química , Hungria , Minerais/química , Pintura , Tempo (Meteorologia)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA