Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
bioRxiv ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38766054

RESUMO

Identifying the causal variants and mechanisms that drive complex traits and diseases remains a core problem in human genetics. The majority of these variants have individually weak effects and lie in non-coding gene-regulatory elements where we lack a complete understanding of how single nucleotide alterations modulate transcriptional processes to affect human phenotypes. To address this, we measured the activity of 221,412 trait-associated variants that had been statistically fine-mapped using a Massively Parallel Reporter Assay (MPRA) in 5 diverse cell-types. We show that MPRA is able to discriminate between likely causal variants and controls, identifying 12,025 regulatory variants with high precision. Although the effects of these variants largely agree with orthogonal measures of function, only 69% can plausibly be explained by the disruption of a known transcription factor (TF) binding motif. We dissect the mechanisms of 136 variants using saturation mutagenesis and assign impacted TFs for 91% of variants without a clear canonical mechanism. Finally, we provide evidence that epistasis is prevalent for variants in close proximity and identify multiple functional variants on the same haplotype at a small, but important, subset of trait-associated loci. Overall, our study provides a systematic functional characterization of likely causal common variants underlying complex and molecular human traits, enabling new insights into the regulatory grammar underlying disease risk.

2.
Nature ; 626(8000): 799-807, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326615

RESUMO

Linking variants from genome-wide association studies (GWAS) to underlying mechanisms of disease remains a challenge1-3. For some diseases, a successful strategy has been to look for cases in which multiple GWAS loci contain genes that act in the same biological pathway1-6. However, our knowledge of which genes act in which pathways is incomplete, particularly for cell-type-specific pathways or understudied genes. Here we introduce a method to connect GWAS variants to functions. This method links variants to genes using epigenomics data, links genes to pathways de novo using Perturb-seq and integrates these data to identify convergence of GWAS loci onto pathways. We apply this approach to study the role of endothelial cells in genetic risk for coronary artery disease (CAD), and discover 43 CAD GWAS signals that converge on the cerebral cavernous malformation (CCM) signalling pathway. Two regulators of this pathway, CCM2 and TLNRD1, are each linked to a CAD risk variant, regulate other CAD risk genes and affect atheroprotective processes in endothelial cells. These results suggest a model whereby CAD risk is driven in part by the convergence of causal genes onto a particular transcriptional pathway in endothelial cells. They highlight shared genes between common and rare vascular diseases (CAD and CCM), and identify TLNRD1 as a new, previously uncharacterized member of the CCM signalling pathway. This approach will be widely useful for linking variants to functions for other common polygenic diseases.


Assuntos
Doença da Artéria Coronariana , Células Endoteliais , Estudo de Associação Genômica Ampla , Hemangioma Cavernoso do Sistema Nervoso Central , Humanos , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Predisposição Genética para Doença/genética , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Polimorfismo de Nucleotídeo Único , Epigenômica , Transdução de Sinais/genética , Herança Multifatorial
3.
Nat Genet ; 56(1): 162-169, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38036779

RESUMO

Fine-mapping aims to identify causal genetic variants for phenotypes. Bayesian fine-mapping algorithms (for example, SuSiE, FINEMAP, ABF and COJO-ABF) are widely used, but assessing posterior probability calibration remains challenging in real data, where model misspecification probably exists, and true causal variants are unknown. We introduce replication failure rate (RFR), a metric to assess fine-mapping consistency by downsampling. SuSiE, FINEMAP and COJO-ABF show high RFR, indicating potential overconfidence in their output. Simulations reveal that nonsparse genetic architecture can lead to miscalibration, while imputation noise, nonuniform distribution of causal variants and quality control filters have minimal impact. Here we present SuSiE-inf and FINEMAP-inf, fine-mapping methods modeling infinitesimal effects alongside fewer larger causal effects. Our methods show improved calibration, RFR and functional enrichment, competitive recall and computational efficiency. Notably, using our methods' posterior effect sizes substantially increases polygenic risk score accuracy over SuSiE and FINEMAP. Our work improves causal variant identification for complex traits, a fundamental goal of human genetics.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Humanos , Teorema de Bayes , Herança Multifatorial , Algoritmos
4.
Nat Commun ; 14(1): 7659, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036535

RESUMO

Many of the Alzheimer's disease (AD) risk genes are specifically expressed in microglia and astrocytes, but how and when the genetic risk localizing to these cell types contributes to AD pathophysiology remains unclear. Here, we derive cell-type-specific AD polygenic risk scores (ADPRS) from two extensively characterized datasets and uncover the impact of cell-type-specific genetic risk on AD endophenotypes. In an autopsy dataset spanning all stages of AD (n = 1457), the astrocytic ADPRS affected diffuse and neuritic plaques (amyloid-ß), while microglial ADPRS affected neuritic plaques, microglial activation, neurofibrillary tangles (tau), and cognitive decline. In an independent neuroimaging dataset of cognitively unimpaired elderly (n = 2921), astrocytic ADPRS was associated with amyloid-ß, and microglial ADPRS was associated with amyloid-ß and tau, connecting cell-type-specific genetic risk with AD pathology even before symptom onset. Together, our study provides human genetic evidence implicating multiple glial cell types in AD pathophysiology, starting from the preclinical stage.


Assuntos
Doença de Alzheimer , Humanos , Idoso , Doença de Alzheimer/metabolismo , Placa Amiloide/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Emaranhados Neurofibrilares/genética , Emaranhados Neurofibrilares/metabolismo , Fatores de Risco
5.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014075

RESUMO

Identifying transcriptional enhancers and their target genes is essential for understanding gene regulation and the impact of human genetic variation on disease1-6. Here we create and evaluate a resource of >13 million enhancer-gene regulatory interactions across 352 cell types and tissues, by integrating predictive models, measurements of chromatin state and 3D contacts, and largescale genetic perturbations generated by the ENCODE Consortium7. We first create a systematic benchmarking pipeline to compare predictive models, assembling a dataset of 10,411 elementgene pairs measured in CRISPR perturbation experiments, >30,000 fine-mapped eQTLs, and 569 fine-mapped GWAS variants linked to a likely causal gene. Using this framework, we develop a new predictive model, ENCODE-rE2G, that achieves state-of-the-art performance across multiple prediction tasks, demonstrating a strategy involving iterative perturbations and supervised machine learning to build increasingly accurate predictive models of enhancer regulation. Using the ENCODE-rE2G model, we build an encyclopedia of enhancer-gene regulatory interactions in the human genome, which reveals global properties of enhancer networks, identifies differences in the functions of genes that have more or less complex regulatory landscapes, and improves analyses to link noncoding variants to target genes and cell types for common, complex diseases. By interpreting the model, we find evidence that, beyond enhancer activity and 3D enhancer-promoter contacts, additional features guide enhancerpromoter communication including promoter class and enhancer-enhancer synergy. Altogether, these genome-wide maps of enhancer-gene regulatory interactions, benchmarking software, predictive models, and insights about enhancer function provide a valuable resource for future studies of gene regulation and human genetics.

6.
Nat Genet ; 55(8): 1267-1276, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37443254

RESUMO

Genome-wide association studies (GWASs) are a valuable tool for understanding the biology of complex human traits and diseases, but associated variants rarely point directly to causal genes. In the present study, we introduce a new method, polygenic priority score (PoPS), that learns trait-relevant gene features, such as cell-type-specific expression, to prioritize genes at GWAS loci. Using a large evaluation set of genes with fine-mapped coding variants, we show that PoPS and the closest gene individually outperform other gene prioritization methods, but observe the best overall performance by combining PoPS with orthogonal methods. Using this combined approach, we prioritize 10,642 unique gene-trait pairs across 113 complex traits and diseases with high precision, finding not only well-established gene-trait relationships but nominating new genes at unresolved loci, such as LGR4 for estimated glomerular filtration rate and CCR7 for deep vein thrombosis. Overall, we demonstrate that PoPS provides a powerful addition to the gene prioritization toolbox.


Assuntos
Herança Multifatorial , Locos de Características Quantitativas , Humanos , Herança Multifatorial/genética , Locos de Características Quantitativas/genética , Estudo de Associação Genômica Ampla/métodos , Predisposição Genética para Doença/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
7.
medRxiv ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333223

RESUMO

Alzheimer's disease (AD) heritability is enriched in glial genes, but how and when cell-type-specific genetic risk contributes to AD remains unclear. Here, we derive cell-type-specific AD polygenic risk scores (ADPRS) from two extensively characterized datasets. In an autopsy dataset spanning all stages of AD (n=1,457), astrocytic (Ast) ADPRS was associated with both diffuse and neuritic Aß plaques, while microglial (Mic) ADPRS was associated with neuritic Aß plaques, microglial activation, tau, and cognitive decline. Causal modeling analyses further clarified these relationships. In an independent neuroimaging dataset of cognitively unimpaired elderly (n=2,921), Ast-ADPRS were associated with Aß, and Mic-ADPRS was associated with Aß and tau, showing a consistent pattern with the autopsy dataset. Oligodendrocytic and excitatory neuronal ADPRSs were associated with tau, but only in the autopsy dataset including symptomatic AD cases. Together, our study provides human genetic evidence implicating multiple glial cell types in AD pathophysiology, starting from the preclinical stage.

8.
Nat Genet ; 54(4): 450-458, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35393596

RESUMO

Polygenic risk scores suffer reduced accuracy in non-European populations, exacerbating health disparities. We propose PolyPred, a method that improves cross-population polygenic risk scores by combining two predictors: a new predictor that leverages functionally informed fine-mapping to estimate causal effects (instead of tagging effects), addressing linkage disequilibrium differences, and BOLT-LMM, a published predictor. When a large training sample is available in the non-European target population, we propose PolyPred+, which further incorporates the non-European training data. We applied PolyPred to 49 diseases/traits in four UK Biobank populations using UK Biobank British training data, and observed relative improvements versus BOLT-LMM ranging from +7% in south Asians to +32% in Africans, consistent with simulations. We applied PolyPred+ to 23 diseases/traits in UK Biobank east Asians using both UK Biobank British and Biobank Japan training data, and observed improvements of +24% versus BOLT-LMM and +12% versus PolyPred. Summary statistics-based analogs of PolyPred and PolyPred+ attained similar improvements.


Assuntos
Estudo de Associação Genômica Ampla , Herança Multifatorial , Humanos , Desequilíbrio de Ligação , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco
9.
Sci Adv ; 8(16): eabl4602, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35452290

RESUMO

Coronary artery disease (CAD) remains the leading cause of death despite scientific advances. Elucidating shared CAD/pneumonia pathways may reveal novel insights regarding CAD pathways. We performed genome-wide pleiotropy analyses of CAD and pneumonia, examined the causal effects of the expression of genes near independently replicated SNPs and interacting genes with CAD and pneumonia, and tested interactions between disruptive coding mutations of each pleiotropic gene and smoking status on CAD and pneumonia risks. Identified pleiotropic SNPs were annotated to ADAMTS7 and IL6R. Increased ADAMTS7 expression across tissues consistently showed decreased risk for CAD and increased risk for pneumonia; increased IL6R expression showed increased risk for CAD and decreased risk for pneumonia. We similarly observed opposing CAD/pneumonia effects for NLRP3. Reduced ADAMTS7 expression conferred a reduced CAD risk without increased pneumonia risk only among never-smokers. Genetic immune-inflammatory axes of CAD linked to respiratory infections implicate ADAMTS7 and IL6R, and related genes.


Assuntos
Doença da Artéria Coronariana , Pleiotropia Genética , Pneumonia , Proteína ADAMTS7/genética , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/imunologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Pneumonia/genética , Pneumonia/imunologia , Polimorfismo de Nucleotídeo Único , Receptores de Interleucina-6/genética
10.
Cell Genom ; 2(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36643910

RESUMO

Meta-analysis is pervasively used to combine multiple genome-wide association studies (GWASs). Fine-mapping of meta-analysis studies is typically performed as in a single-cohort study. Here, we first demonstrate that heterogeneity (e.g., of sample size, phenotyping, imputation) hurts calibration of meta-analysis fine-mapping. We propose a summary statistics-based quality-control (QC) method, suspicious loci analysis of meta-analysis summary statistics (SLALOM), that identifies suspicious loci for meta-analysis fine-mapping by detecting outliers in association statistics. We validate SLALOM in simulations and the GWAS Catalog. Applying SLALOM to 14 meta-analyses from the Global Biobank Meta-analysis Initiative (GBMI), we find that 67% of loci show suspicious patterns that call into question fine-mapping accuracy. These predicted suspicious loci are significantly depleted for having nonsynonymous variants as lead variant (2.7×; Fisher's exact p = 7.3 × 10-4). We find limited evidence of fine-mapping improvement in the GBMI meta-analyses compared with individual biobanks. We urge extreme caution when interpreting fine-mapping results from meta-analysis of heterogeneous cohorts.

11.
Cell ; 184(20): 5247-5260.e19, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34534445

RESUMO

3' untranslated region (3'UTR) variants are strongly associated with human traits and diseases, yet few have been causally identified. We developed the massively parallel reporter assay for 3'UTRs (MPRAu) to sensitively assay 12,173 3'UTR variants. We applied MPRAu to six human cell lines, focusing on genetic variants associated with genome-wide association studies (GWAS) and human evolutionary adaptation. MPRAu expands our understanding of 3'UTR function, suggesting that simple sequences predominately explain 3'UTR regulatory activity. We adapt MPRAu to uncover diverse molecular mechanisms at base pair resolution, including an adenylate-uridylate (AU)-rich element of LEPR linked to potential metabolic evolutionary adaptations in East Asians. We nominate hundreds of 3'UTR causal variants with genetically fine-mapped phenotype associations. Using endogenous allelic replacements, we characterize one variant that disrupts a miRNA site regulating the viral defense gene TRIM14 and one that alters PILRB abundance, nominating a causal variant underlying transcriptional changes in age-related macular degeneration.


Assuntos
Regiões 3' não Traduzidas/genética , Evolução Biológica , Doença/genética , Estudo de Associação Genômica Ampla , Algoritmos , Alelos , Regulação da Expressão Gênica , Genes Reporter , Variação Genética , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Polirribossomos/metabolismo , Locos de Características Quantitativas/genética , RNA/genética
13.
Nat Genet ; 53(8): 1166-1176, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34326544

RESUMO

Effective interpretation of genome function and genetic variation requires a shift from epigenetic mapping of cis-regulatory elements (CREs) to characterization of endogenous function. We developed hybridization chain reaction fluorescence in situ hybridization coupled with flow cytometry (HCR-FlowFISH), a broadly applicable approach to characterize CRISPR-perturbed CREs via accurate quantification of native transcripts, alongside CRISPR activity screen analysis (CASA), a hierarchical Bayesian model to quantify CRE activity. Across >325,000 perturbations, we provide evidence that CREs can regulate multiple genes, skip over the nearest gene and display activating and/or silencing effects. At the cholesterol-level-associated FADS locus, we combine endogenous screens with reporter assays to exhaustively characterize multiple genome-wide association signals, functionally nominate causal variants and, importantly, identify their target genes.


Assuntos
Hibridização in Situ Fluorescente/métodos , Sequências Reguladoras de Ácido Nucleico , Proteínas Adaptadoras de Transdução de Sinal/genética , Teorema de Bayes , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Dessaturase de Ácido Graxo Delta-5 , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , Ácidos Graxos Dessaturases/genética , Citometria de Fluxo , Fator de Transcrição GATA1/genética , Humanos , Células K562 , Proteínas com Domínio LIM/genética , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas/genética , Locos de Características Quantitativas , RNA Guia de Cinetoplastídeos
14.
Nat Commun ; 12(1): 3394, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099641

RESUMO

The large majority of variants identified by GWAS are non-coding, motivating detailed characterization of the function of non-coding variants. Experimental methods to assess variants' effect on gene expressions in native chromatin context via direct perturbation are low-throughput. Existing high-throughput computational predictors thus have lacked large gold standard sets of regulatory variants for training and validation. Here, we leverage a set of 14,807 putative causal eQTLs in humans obtained through statistical fine-mapping, and we use 6121 features to directly train a predictor of whether a variant modifies nearby gene expression. We call the resulting prediction the expression modifier score (EMS). We validate EMS by comparing its ability to prioritize functional variants with other major scores. We then use EMS as a prior for statistical fine-mapping of eQTLs to identify an additional 20,913 putatively causal eQTLs, and we incorporate EMS into co-localization analysis to identify 310 additional candidate genes across UK Biobank phenotypes.


Assuntos
Mapeamento Cromossômico/métodos , Biologia Computacional/métodos , Locos de Características Quantitativas , Aprendizado de Máquina Supervisionado , Adulto , Estudos de Coortes , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica , Humanos , Polimorfismo de Nucleotídeo Único
15.
Hum Mol Genet ; 30(16): 1521-1534, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-33987664

RESUMO

It is important to study the genetics of complex traits in diverse populations. Here, we introduce covariate-adjusted linkage disequilibrium (LD) score regression (cov-LDSC), a method to estimate SNP-heritability (${\boldsymbol{h}}_{\boldsymbol{g}}^{\mathbf{2}})$ and its enrichment in homogenous and admixed populations with summary statistics and in-sample LD estimates. In-sample LD can be estimated from a subset of the genome-wide association studies samples, allowing our method to be applied efficiently to very large cohorts. In simulations, we show that unadjusted LDSC underestimates ${\boldsymbol{h}}_{\boldsymbol{g}}^{\mathbf{2}}$ by 10-60% in admixed populations; in contrast, cov-LDSC is robustly accurate. We apply cov-LDSC to genotyping data from 8124 individuals, mostly of admixed ancestry, from the Slim Initiative in Genomic Medicine for the Americas study, and to approximately 161 000 Latino-ancestry individuals, 47 000 African American-ancestry individuals and 135 000 European-ancestry individuals, as classified by 23andMe. We estimate ${\boldsymbol{h}}_{\boldsymbol{g}}^{\mathbf{2}}$ and detect heritability enrichment in three quantitative and five dichotomous phenotypes, making this, to our knowledge, the most comprehensive heritability-based analysis of admixed individuals to date. Most traits have high concordance of ${\boldsymbol{h}}_{\boldsymbol{g}}^{\mathbf{2}}$ and consistent tissue-specific heritability enrichment among different populations. However, for age at menarche, we observe population-specific heritability estimates of ${\boldsymbol{h}}_{\boldsymbol{g}}^{\mathbf{2}}$. We observe consistent patterns of tissue-specific heritability enrichment across populations; for example, in the limbic system for BMI, the per-standardized-annotation effect size $ \tau $* is 0.16 ± 0.04, 0.28 ± 0.11 and 0.18 ± 0.03 in the Latino-, African American- and European-ancestry populations, respectively. Our approach is a powerful way to analyze genetic data for complex traits from admixed populations.


Assuntos
Genética Populacional , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Desequilíbrio de Ligação/genética , Herança Multifatorial/genética , Técnicas de Genotipagem/estatística & dados numéricos , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Característica Quantitativa Herdável
16.
Nature ; 593(7858): 238-243, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33828297

RESUMO

Genome-wide association studies (GWAS) have identified thousands of noncoding loci that are associated with human diseases and complex traits, each of which could reveal insights into the mechanisms of disease1. Many of the underlying causal variants may affect enhancers2,3, but we lack accurate maps of enhancers and their target genes to interpret such variants. We recently developed the activity-by-contact (ABC) model to predict which enhancers regulate which genes and validated the model using CRISPR perturbations in several cell types4. Here we apply this ABC model to create enhancer-gene maps in 131 human cell types and tissues, and use these maps to interpret the functions of GWAS variants. Across 72 diseases and complex traits, ABC links 5,036 GWAS signals to 2,249 unique genes, including a class of 577 genes that appear to influence multiple phenotypes through variants in enhancers that act in different cell types. In inflammatory bowel disease (IBD), causal variants are enriched in predicted enhancers by more than 20-fold in particular cell types such as dendritic cells, and ABC achieves higher precision than other regulatory methods at connecting noncoding variants to target genes. These variant-to-function maps reveal an enhancer that contains an IBD risk variant and that regulates the expression of PPIF to alter the membrane potential of mitochondria in macrophages. Our study reveals principles of genome regulation, identifies genes that affect IBD and provides a resource and generalizable strategy to connect risk variants of common diseases to their molecular and cellular functions.


Assuntos
Elementos Facilitadores Genéticos/genética , Predisposição Genética para Doença , Variação Genética/genética , Genoma Humano/genética , Estudo de Associação Genômica Ampla , Doenças Inflamatórias Intestinais/genética , Linhagem Celular , Cromossomos Humanos Par 10/genética , Ciclofilinas/genética , Células Dendríticas , Feminino , Humanos , Macrófagos/metabolismo , Masculino , Mitocôndrias/metabolismo , Especificidade de Órgãos/genética , Fenótipo
17.
Nat Genet ; 53(2): 195-204, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33462486

RESUMO

Admixed populations are routinely excluded from genomic studies due to concerns over population structure. Here, we present a statistical framework and software package, Tractor, to facilitate the inclusion of admixed individuals in association studies by leveraging local ancestry. We test Tractor with simulated and empirical two-way admixed African-European cohorts. Tractor generates accurate ancestry-specific effect-size estimates and P values, can boost genome-wide association study (GWAS) power and improves the resolution of association signals. Using a local ancestry-aware regression model, we replicate known hits for blood lipids, discover novel hits missed by standard GWAS and localize signals closer to putative causal variants.


Assuntos
Negro ou Afro-Americano/genética , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Modelos Genéticos , Software , População Branca/genética , Colesterol/sangue , Colesterol/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Haplótipos/genética , Proteínas de Homeodomínio/genética , Humanos , Lipídeos/sangue , Linhagem , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/genética
18.
Nat Genet ; 52(12): 1355-1363, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33199916

RESUMO

Fine-mapping aims to identify causal variants impacting complex traits. We propose PolyFun, a computationally scalable framework to improve fine-mapping accuracy by leveraging functional annotations across the entire genome-not just genome-wide-significant loci-to specify prior probabilities for fine-mapping methods such as SuSiE or FINEMAP. In simulations, PolyFun + SuSiE and PolyFun + FINEMAP were well calibrated and identified >20% more variants with a posterior causal probability >0.95 than identified in their nonfunctionally informed counterparts. In analyses of 49 UK Biobank traits (average n = 318,000), PolyFun + SuSiE identified 3,025 fine-mapped variant-trait pairs with posterior causal probability >0.95, a >32% improvement versus SuSiE. We used posterior mean per-SNP heritabilities from PolyFun + SuSiE to perform polygenic localization, constructing minimal sets of common SNPs causally explaining 50% of common SNP heritability; these sets ranged in size from 28 (hair color) to 3,400 (height) to 2 million (number of children). In conclusion, PolyFun prioritizes variants for functional follow-up and provides insights into complex trait architectures.


Assuntos
Mapeamento Cromossômico/métodos , Biologia Computacional/métodos , Estudo de Associação Genômica Ampla/métodos , Herança Multifatorial/genética , Genoma Humano/genética , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
19.
Nat Commun ; 11(1): 1237, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144282

RESUMO

Genome-wide association studies have associated thousands of genetic variants with complex traits and diseases, but pinpointing the causal variant(s) among those in tight linkage disequilibrium with each associated variant remains a major challenge. Here, we use seven experimental assays to characterize all common variants at the multiple disease-associated TNFAIP3 locus in five disease-relevant immune cell lines, based on a set of features related to regulatory potential. Trait/disease-associated variants are enriched among SNPs prioritized based on either: (1) residing within CRISPRi-sensitive regulatory regions, or (2) localizing in a chromatin accessible region while displaying allele-specific reporter activity. Of the 15 trait/disease-associated haplotypes at TNFAIP3, 9 have at least one variant meeting one or both of these criteria, 5 of which are further supported by genetic fine-mapping. Our work provides a comprehensive strategy to characterize genetic variation at important disease-associated loci, and aids in the effort to identify trait causal genetic variants.


Assuntos
Doenças Autoimunes/genética , Loci Gênicos/genética , Estudo de Associação Genômica Ampla/métodos , Herança Multifatorial/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Linhagem Celular Tumoral , Predisposição Genética para Doença , Variação Genética/imunologia , Haplótipos/genética , Haplótipos/imunologia , Humanos , Desequilíbrio de Ligação , Herança Multifatorial/imunologia , Estudo de Prova de Conceito
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...