Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 5: e1449, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25299774

RESUMO

Recently, we reported that human neuroglobin (NGB) is a new player in the signal transduction pathways that lead to 17ß-estradiol (E2)-induced neuron survival. Indeed, E2 induces in neuron mitochondria the enhancement of NGB level, which in turn impairs the activation of a pro-apoptotic cascade. Nowadays, the existence of a similar pathway activated by E2 in non-neuronal cells is completely unknown. Here, the role of E2-induced NGB upregulation in tumor cells is reported. E2 induced the upregulation of NGB in a dose- and time-dependent manner in MCF-7, HepG2, SK-N-BE, and HeLa cells transfected with estrogen receptor α (ERα), whereas E2 was unable to modulate the NGB expression in the ERα-devoid HeLa cells. Both transcriptional and extranuclear ERα signals were required for the E2-dependent upregulation of NGB in MCF-7 and HepG2 cell lines. E2 stimulation modified NGB intracellular localization, inducing a significant reduction of NGB in the nucleus with a parallel increase of NGB in the mitochondria in both HepG2 and MCF-7 cells. Remarkably, E2 pretreatment did not counteract the H2O2-induced caspase-3 and poly (ADP-ribose) polymerase 1 (PARP-1) cleavage, as well as Bcl-2 overexpression in MCF-7 and HepG2 cells in which NGB was stably silenced by using shRNA lentiviral particles, highlighting the pivotal role of NGB in E2-induced antiapoptotic pathways in cancer cells. Present results indicate that the E2-induced NGB upregulation in cancer cells could represent a defense mechanism of E2-related cancers rendering them insensitive to oxidative stress. As a whole, these data open new avenues to develop therapeutic strategies against E2-related cancers.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Globinas/metabolismo , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Estradiol/metabolismo , Receptor alfa de Estrogênio/genética , Globinas/genética , Humanos , Neoplasias/genética , Proteínas do Tecido Nervoso/genética , Neuroglobina
2.
Cell Death Dis ; 4: e508, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23429294

RESUMO

The sex steroid hormone 17ß-estradiol (E2) upregulates the levels of neuroglobin (NGB), a new neuroprotectant globin, to elicit its neuroprotective effect against H(2)O(2)-induced apoptosis. Several mechanisms could be proposed to justify the NGB involvement in E2 prevention of stress-induced apoptotic cell death. Here, we evaluate the ability of E2 to modulate the intracellular NGB localization and the NGB interaction with mitochondrial cytochrome c following the H(2)O(2)-induced toxicity. Present results demonstrate that NGB is expressed in the nuclei, mitochondria, and cytosol of human neuroblastoma SK-N-BE cells. E2, but not H(2)O(2) treatment of SK-N-BE cells, reallocates NGB mainly at the mitochondria and contemporarily reduces the number of apoptotic nuclei and the levels of cleaved caspase-3. Remarkably, the E2 treatment strongly increases NGB-cytochrome c association into mitochondria and reduces the levels of cytochrome c into the cytosol of SK-N-BE cells. Although both estrogen receptors (ERα and ERß) are expressed in the nucleus, mitochondria, and cytosol of SK-N-BE cells, this E2 effect specifically requires the mitochondrial ERß activity. As a whole, these data demonstrate that the interception of the intrinsic apoptotic pathway into mitochondria (i.e., the prevention of cytochrome c release) is one of the pivotal mechanisms underlying E2-dependent NGB neuroprotection against H(2)O(2) toxicity.


Assuntos
Apoptose/efeitos dos fármacos , Citocromos c/metabolismo , Estradiol/farmacologia , Globinas/metabolismo , Peróxido de Hidrogênio/toxicidade , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Regulação para Cima/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Globinas/antagonistas & inibidores , Globinas/genética , Células HeLa , Humanos , Mitocôndrias/efeitos dos fármacos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neuroglobina , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transfecção
3.
J Neuroendocrinol ; 25(3): 260-70, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23190172

RESUMO

Neuroglobin (Ngb), so named after its initial discovery in brain neurones, has received great attention as a result of its neuroprotective effects both in vitro and in vivo. Recently, we demonstrated that, in neurones, Ngb is a 17ß-oestradiol (E(2) ) inducible protein that is pivotal for hormone-induced anti-apoptotic effects against H(2) O(2) toxicity. The involvement of Ngb in other brain cell populations, as well as in other neuroprotective effects of E(2) , is completely unknown at present. We demonstrate Ngb immunoreactivity in reactive astrocytes located in the proximity of a penetrating cortical injury in vivo and the involvement of Ngb in the E(2) -mediated anti-inflammatory effect in primary cortical astrocytes. Upon binding to oestrogen receptor (ER)ß, E(2) enhances Ngb levels in a dose-dependent manner. Although with a lesser degree than E(2) , the pro-inflammatory stimulation with lipopolysaccharide (LPS) also induces the increase of Ngb protein levels via nuclear factor-(NF)κB signal(s). Moreover, a negative cross-talk between ER subtypes and NFκB signal(s) has been demonstrated. In particular, ERα-activated signals prevent the NFκB-mediated Ngb increase, whereas LPS impairs the ERß-induced up-regulation of Ngb. Therefore, the co-expression of both ERα and ERß is pivotal for mediating E(2) -induced Ngb expression in the presence of NFκB-activated signals. Interestingly, Ngb silencing prevents the effect of E(2) on the expression of inflammatory markers (i.e. interleukin 6 and interferon γ-inducible protein 10). Ngb can be regarded as a key mediator of the different protective effects of E(2) in the brain, including protection against oxidative stress and the control of inflammation, both of which are at the root of several neurodegenerative diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Astrócitos/efeitos dos fármacos , Estradiol/farmacologia , Receptor beta de Estrogênio/efeitos dos fármacos , Globinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Regulação para Cima , Animais , Western Blotting , Células Cultivadas , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Lipopolissacarídeos/farmacologia , Camundongos , Neuroglobina , Reação em Cadeia da Polimerase em Tempo Real , Vimentina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...