Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Int Urol Nephrol ; 56(5): 1763-1771, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38093038

RESUMO

BACKGROUND AND AIMS: The management of complications of arteriovenous fistula (AVF) for hemodialysis, principally stenosis, remains a major challenge for clinicians with a substantial impact on health resources. Stenosis not infrequently preludes to thrombotic events with the loss of AVF functionality. A functioning AVF, when listened by a stethoscope, has a continuous systolic-diastolic low-frequency murmur, while with stenosis, the frequency of the murmur increases and the duration of diastolic component decreases, disappearing in severe stenosis. These evidences are strictly subjective and dependent from operator skill and experience. New generation digital stethoscopes are able to record sound and subsequently dedicated software allows to extract quantitative variables that characterize the sound in an absolutely objective and repeatable way. The aim of our study was to analyze with an appropriate software sounds from AVFs taken by a commercial digital stethoscope and to investigate the potentiality to develop an objective way to detect stenosis. METHODS: Between September 2022 and January 2023, 64 chronic hemodialysis (HD) patients were screened by two blinded experienced examiners for recognized criteria for stenosis by Doppler ultrasound (DUS) and, consequently, the sound coming from the AVFs using a 3 M™ Littmann® CORE Digital Stethoscope 8570 in standardized sites was recorded. The sound waves were transformed into quantitative variables (amplitude and frequency) using a sound analysis software. The practical usefulness of the core digital stethoscope for a quick identification of an AVF stenosis was further evaluated through a pragmatic trial. Eight young nephrologist trainees underwent a simple auscultatory training consisting of two sessions of sound auscultation focusing two times on a "normal" AVF sound by placing the digital stethoscope on a convenience site of a functional AVF. RESULTS: In 48 patients eligible, all sound components displayed, alone, a remarkable diagnostic capacity. More in detail, the AUC of the average power was 0.872 [95% CI 0.729-0.951], while that of the mean normalized frequency was 0.822 [95% 0.656-0.930]. From a total of 32 auscultations (eight different block sequences, each one comprising four auscultations), the young clinicians were able to identify the correct sound (stenosis/normal AVF) in 25 cases, corresponding to an overall accuracy of 78.12% (95% CI 60.03-90.72%). CONCLUSIONS: The analysis of sound waves by a digital stethoscope permitted us to distinguish between stenotic and no stenotic AVFs. The standardization of this technique and the introducing of data in a deep learning algorithm could allow an objective and fast method for a frequent monitoring of AVF.


Assuntos
Fístula Arteriovenosa , Derivação Arteriovenosa Cirúrgica , Humanos , Projetos Piloto , Constrição Patológica , Diálise Renal , Auscultação/métodos
2.
Sensors (Basel) ; 23(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37687805

RESUMO

Volatile organic compounds (VOCs) have recently received considerable attention for the analysis and monitoring of different biochemical processes in biological systems such as humans, plants, and microorganisms. The advantage of using VOCs to gather information about a specific process is that they can be extracted using different types of samples, even at low concentrations. Therefore, VOC levels represent the fingerprints of specific biochemical processes. The aim of this work was to develop a sensor based on a photoionization detector (PID) and a zeolite layer, used as an alternative analytic separation technique for the analysis of VOCs. The identification of VOCs occurred through the evaluation of the emissive profile during the thermal desorption phase, using a stainless-steel chamber for analysis. Emission profiles were evaluated using a double exponential mathematical model, which fit well if compared with the physical system, describing both the evaporation and diffusion processes. The results showed that the zeolite layer was selective for propionic acid molecules if compared to succinic acid molecules, showing linear behavior even at low concentrations. The process to define the optimal adsorption time between the propionic acid molecules was performed in the range of 5 to 60 min, followed by a thermal desorption process at 100 °C. An investigation of the relationship between the evaporation and diffusion rates showed that the maximum concentration of detected propionic acid molecules occurred in 15 min. Other analyses were performed to study how the concentration of VOCs depended on the desorption temperature and the volume of the analysis chamber. For this purpose, tests were performed using three analysis chambers with volumes of 25 × 10-6, 50 × 10-6, and 150 × 10-6 m3 at three different desorption temperatures of 20 °C, 50 °C, and 100 °C, respectively. The results demonstrated that the evaporation rate of the VOCs increased rapidly with an increasing temperature, while the diffusion rate remained almost constant and was characterized by a slow decay time. The diffusion ratio increased when using a chamber with a larger volume. These results highlight the capabilities of this alternative technique for VOC analysis, even for samples with low concentrations. The coupling of a zeolite layer and a PID improves the detection selectivity in portable devices, demonstrating the feasibility of extending its use to a wide range of new applications.

3.
Diagnostics (Basel) ; 13(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37510186

RESUMO

Background and aim-Alterations in circulating microRNA (miRNA) expression patterns are thought to be involved in the early stages of prediabetes, as well as in the progression to overt type 2 diabetes mellitus (T2D) and its vascular complications. However, most research findings are conflicting, in part due to differences in miRNA extraction and normalization methods, and in part due to differences in the study populations and their selection. This cross-sectional study seeks to find new potentially useful biomarkers to predict and/or diagnose T2D by investigating the differential expression patterns of circulating miRNAs in the serum of patients with impaired fasting glucose (IFG) and new-onset T2D, with respect to euglycemic controls, using a high-throughput 384-well array and real-time PCR. Methods-Thirty subjects, aged 45-65 years, classified into three matched groups (of 10 participants each) according to their glycometabolic status, namely (1) healthy euglycemic controls, (2) patients with IFG and (3) patients with new-onset, uncomplicated T2D (<2 years since diagnosis) were enrolled. Circulating miRNAs were extracted from blood serum and profiled through real-time PCR on a commercial 384 well-array, containing spotted forward primers for 372 miRNAs. Data analysis was performed by using the online data analysis software GeneGlobe and normalized by the global Ct mean method. Results-Of the 372 analyzed miRNAs, 33 showed a considerably different expression in IFG and new-onset T2D compared to healthy euglycemic controls, with 2 of them down-regulated and 31 up-regulated. Stringent analysis conditions, using a differential fold regulation threshold ≥ 10, revealed that nine miRNAs (hsa-miR-3610, hsa-miR-3200-5p, hsa-miR-4651, hsa-miR-3135b, hsa-miR-1281, hsa-miR-4301, hsa-miR-195-5p, hsa-miR-523-5p and hsa-let-7a-5p) showed a specific increase in new-onset T2D patients compared to IFG patients, suggesting their possible role as early biomarkers of progression from prediabetes to T2D. Moreover, by conventional fold regulation thresholds of ±2, hsa-miR-146a-5p was down-regulated and miR-1225-3p up-regulated in new-onset T2D patients only. Whereas hsa-miR-146a-5p has a well-known role in glucose metabolism, insulin resistance and T2D complications, no association between hsa-miR-1225-3p and T2D has been previously reported. Bioinformatic and computational analysis predict a role of hsa-miR-1225-3p in the pathogenesis of T2D through the interaction with MAP3K1 and HMGA1. Conclusions-The outcomes of this study could aid in the identification and characterization of circulating miRNAs as potential novel biomarkers for the early diagnosis of T2D and may serve as a proof-of-concept for future mechanistic investigations.

4.
Bioengineering (Basel) ; 9(10)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36290471

RESUMO

High-intensity, low-frequency magnetic fields (MFs) have been widely used in the treatment of diseases and in drug delivery, even though they could induce structural changes in pharmacological molecules. Morphological changes in ketoprofen and KiOil were investigated through Fourier-transform infrared spectroscopy (FT-IR). Unsupervised principal component analysis was carried out for data clustering. Clinical validation on 22 patients with lower back pain was managed using diamagnetic therapy plus topical ketoprofen or KiOil. The Numerical Rating Scale (NRS) and Short-Form Health Survey 36 (SF-36) were used to evaluate clinical and functional response. Ketoprofen showed clear clustering among samples exposed to MF (4000−650 cm−1), and in the narrow frequency band (1675−1475 cm−1), results evidenced structural changes which involved other excipients than ketoprofen. KiOil has evidenced structural modifications in the subcomponents of the formulation. Clinical treatment with ketoprofen showed an average NRS of 7.77 ± 2.25 before and an average NRS of 2.45 ± 2.38 after MF treatment. There was a statistically significant reduction in NRS (p = 0.003) and in SF-36 (p < 0.005). Patients treated with KiOil showed an average NRS of 7.59 ± 2.49 before treatment and an average NRS of 1.90 ± 2.26 after treatment (p < 0.005). SF-36 showed statistical significance for all items except limitations due to emotional problems. A high-intensity pulsed magnetic field is an adjunct to topical treatment in patients with localized pain, and the effect of MF does not evidence significant effects on the molecules.

5.
Bioengineering (Basel) ; 9(8)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36004929

RESUMO

Since sunlight is one of the most easily available and clean energy supplies, solar cell development and the improvement of its conversion efficiency represent a highly interesting topic. Superficial light reflection is one of the limiting factors of the photovoltaic cells (PV) efficiency. To this end, interfacial layer with anti-reflective properties reduces this phenomenon, improving the energy potentially available for transduction. Nanoporous materials, because of the correlation between the refractive index and the porosity, allow low reflection, improving light transmission through the coating. In this work, anti-reflective coatings (ARCs) deposited on commercial PV cells, which were fabricated using two different Linde Type A (LTA) zeolites (type 3A and 4A), have been investigated. The proposed technique allows an easier deposition of a zeolite-based mixture, avoiding the use of chemicals and elevated temperature calcination processes. Results using radiation in the range 470-610 nm evidenced substantial enhancement of the fill factor, with maximum achieved values of over 40%. At 590 and 610 nm, which are the most interesting bands for implantable devices, FF is improved, with a maximum of 22% and 10%, respectively. ARCs differences are mostly related to the morphology of the zeolite powder used, which resulted in thicker and rougher coatings using zeolite 3A. The proposed approach allows a simple and reliable deposition technique, which can be of interest for implantable medical devices.

6.
Theranostics ; 12(2): 493-511, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34976197

RESUMO

The demand of glucose monitoring devices and even of updated guidelines for the management of diabetic patients is dramatically increasing due to the progressive rise in the prevalence of diabetes mellitus and the need to prevent its complications. Even though the introduction of the first glucose sensor occurred decades ago, important advances both from the technological and clinical point of view have contributed to a substantial improvement in quality healthcare. This review aims to bring together purely technological and clinical aspects of interest in the field of glucose devices by proposing a roadmap in glucose monitoring and management of patients with diabetes. Also, it prospects other biological fluids to be examined as further options in diabetes care, and suggests, throughout the technology innovation process, future directions to improve the follow-up, treatment, and clinical outcomes of patients.


Assuntos
Técnicas Biossensoriais/métodos , Glucose/análise , Técnicas Biossensoriais/instrumentação , Glicemia/análise , Líquido Extracelular/química , Previsões , Glicosúria , Humanos , Saliva/química , Suor/química , Lágrimas/química
7.
Artigo em Inglês | MEDLINE | ID: mdl-33956630

RESUMO

Polyvinylidene fluoride (PVDF), a material with ferroelectric characteristics, is still extremely topical for the manufacturing of transducers, and different examples, some of which have been actively commercialized since the 1980s, are reported in the literature. In this work, we present a review focused on the PVDF technology for the manufacturing of in-air ultrasonic transducers, which found application in medical robotics, sonar systems, and automation industry (e.g., proximity sensors and obstacle detection). The aim is to provide a comprehensive view on the development of such ultrasonic transducers, highlighting the constructive choices and the advantages/disadvantages in a thorough and concise way.

8.
Micromachines (Basel) ; 12(2)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498360

RESUMO

Exploiting the transmission and reception of low frequency ultrasounds in air is often associated with the innate echolocating abilities of some mammals, later emulated with sophisticated electronic systems, to obtain information about unstructured environments. Here, we present a novel approach for the reception of ultrasounds in air, which exploits a piezopolymer broadband sensor and an electronic interface based on a second-generation voltage conveyor (VCII). Taking advantage of its capability to manipulate both voltage and current signals, in this paper, we propose an extremely simple interface that presents a sensitivity level of about -100 dB, which is in line with commercially available references. The presented results are obtained without any filtration stage. The second-generation voltage conveyor active device is implemented through a commercially available AD844, with a supply voltage of ±15 V.

9.
Micromachines (Basel) ; 12(1)2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33401402

RESUMO

Polyvinylidene fluoride and its copolymers are a well-known family of low-cost ferroelectric materials widely used for the fabrication of devices for a wide range of applications. A biocompatibility, high optical quality, chemical and mechanical durability of poly(vinylidene fluoride-trifluoroethylene), (P(VDF-TrFE)), makes it particularly attractive for designing of effective coating layers for different diagnostic techniques. In the present work, the nonlinear optical characterization of P(VDF-TrFE)-coating films deposited onto a glass substrate was done. Advantages of the coating application for cells/substrates in the field of multiphoton imaging the efficiency of such coating layer for long-duration characterization of so-called harmonic nanoparticles (HNPs) were shown. The influence of glass surface protection by P(VDF-TrFE) film from an effect of HNPs sticking to the walls of the flow-cell was analyzed for effective studying of the optical harmonics generation efficiency of HNPs making the analysis more robust.

10.
Sensors (Basel) ; 20(18)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899869

RESUMO

Low frequency ultrasounds in air are widely used for real-time applications in short-range communication systems and environmental monitoring, in both structured and unstructured environments. One of the parameters widely evaluated in pulse-echo ultrasonic measurements is the time of flight (TOF), which can be evaluated with an increased accuracy and complexity by using different techniques. Hereafter, a nonstandard cross-correlation method is investigated for TOF estimations. The procedure, based on the use of template signals, was implemented to improve the accuracy of recursive TOF evaluations. Tests have been carried out through a couple of 60 kHz custom-designed polyvinylidene fluoride (PVDF) hemicylindrical ultrasonic transducers. The experimental results were then compared with the standard threshold and cross-correlation techniques for method validation and characterization. An average improvement of 30% and 19%, in terms of standard error (SE), was observed. Moreover, the experimental results evidenced an enhancement in repeatability of about 10% in the use of a recursive positioning system.

11.
Artigo em Inglês | MEDLINE | ID: mdl-32849308

RESUMO

Objective: Recently, the role of circulating miRNAs as non-invasive biomarkers for the identification and monitoring of diabetes microvascular complications has emerged. Herein, we aimed to: identify circulating miRNAs differentially expressed in patients with and without diabetic retinopathy (DR); examine their predictive value; and understand their pathogenic impact. Methods: Pooled serum samples from randomly selected matched patients with type 2 diabetes, either with or without DR, were used for initial serum miRNA profiling. Validation of the most relevant miRNAs was thereafter conducted by RT-qPCR in an extended sample of patients with DR and matched controls. Results: Following miRNA profiling, 43 miRNAs were significantly up- or down-regulated in patients with DR compared with controls. After individual validation, 5 miRNAs were found significantly overexpressed in patients with DR. One of them, miR-1281, was the most up-regulated and appeared to be specifically related to DR. Furthermore, secreted levels of miR-1281 were increased in high glucose-cultured retinal cells, and there was evidence of a potential link between glucose-induced miR-1281 up-regulation and DR. Conclusion: Our findings suggest miR-1281 as a circulating biomarker of DR. Also, they highlight the pathogenic significance of miR-1281, providing insights for a new potential target in treating DR.


Assuntos
Biomarcadores/sangue , MicroRNA Circulante/genética , Diabetes Mellitus Tipo 2/complicações , Retinopatia Diabética/diagnóstico , Regulação da Expressão Gênica , MicroRNAs/genética , Idoso , Estudos de Casos e Controles , Movimento Celular , Retinopatia Diabética/sangue , Retinopatia Diabética/etiologia , Feminino , Perfilação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Pessoa de Meia-Idade , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização
12.
Sensors (Basel) ; 20(10)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32423108

RESUMO

We developed and investigated a particular geometry of transducers, emulating the shape of bats' cochlea, to transmit and receive ultrasounds in the air. Their design involved the use of polyvinylidene fluoride (PVDF) as a piezoelectric material, thanks to its excellent conformability and flexibility. This material offers the primary requirements for sensing devices in applications such as sonar system or energy harvesting technology. The piezo film was folded according to both the Archimedean and Fibonacci spirals, and their performances were investigated in the frequency range from 20 kHz up to more than 80 kHz. The finite element analysis (FEA) of the proposed transducers highlighted the presence of multiple resonance vibrations, proved by the experimental measurements of the equivalent electric impedance and frequency response. Far-field radiation patterns demonstrated, horizontally and vertically, omnidirectional properties both as transmitters and receivers. All was enough to establish the best validity of the spiral shaped transducers for applications based on the bio sonar principle.

13.
Sensors (Basel) ; 20(7)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290282

RESUMO

The development of even more compact, inexpensive, and highly sensitive gas sensors is widespread, even though their performances are still limited and technological improvements are in continuous evolution. Zeolite is a class of material which has received particular attention in different applications due to its interesting adsorption/desorption capabilities. The behavior of a zeolite 4A modified capacitor has been investigated for the adsorption of nitrogen (N2), nitric oxide (NO) and 1,1-Difluoroethane (C2H4F2), which are of interest in the field of chemical, biological, radiological, and nuclear threats. Sample measurements were carried out in different environmental conditions, and the variation of the sensor electric capacitance was investigated. The dielectric properties were influenced by the type and concentration of gas species in the environment. Higher changes in capacitance were shown during the adsorption of dry air (+4.2%) and fluorinated gas (+7.3%), while lower dielectric variations were found upon exposure to N2 (-0.4%) and NO (-0.5%). The proposed approach pointed-out that a simple fabrication process may provide a convenient and affordable fabrication of reusable capacitive gas sensor.

14.
Sensors (Basel) ; 20(8)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316392

RESUMO

Wearable sensors are a topic of interest in medical healthcare monitoring due to their compact size and portability. However, providing power to the wearable sensors for continuous health monitoring applications is a great challenge. As the batteries are bulky and require frequent charging, the integration of the wireless power transfer (WPT) module into wearable and implantable sensors is a popular alternative. The flexible sensors benefit by being wirelessly powered, as it not only expands an individual's range of motion, but also reduces the overall size and the energy needs. This paper presents the design, modeling, and experimental characterization of flexible square-shaped spiral coils with different scaling factors for WPT systems. The effects of coil scaling factor on inductance, capacitance, resistance, and the quality factor (Q-factor) are modeled, simulated, and experimentally validated for the case of flexible planar coils. The proposed analytical modeling is helpful to estimate the coil parameters without using the time-consuming Finite Element Method (FEM) simulation. The analytical modeling is presented in terms of the scaling factor to find the best-optimized coil dimensions with the maximum Q-factor. This paper also presents the effect of skin contact with the flexible coil in terms of the power transfer efficiency (PTE) to validate the suitability as a wearable sensor. The measurement results at 405 MHz show that when in contact with the skin, the 20 mm× 20 mm receiver (RX) coil achieves a 42% efficiency through the air media for a 10 mm distance between the transmitter (TX) and RX coils.


Assuntos
Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio , Fontes de Energia Elétrica , Desenho de Equipamento
15.
Artigo em Inglês | MEDLINE | ID: mdl-32117950

RESUMO

Polycaprolactone (PCL) is a biocompatible and biodegradable polymer widely used for the realization of 3D scaffold for tissue engineering applications. The hot embossing technique (HE) allows the obtainment of PCL scaffolds with a regular array of micro pillars on their surface. The main drawback affecting this kind of micro fabrication process is that such structural superficial details can be damaged when detaching the replica from the mold. Therefore, the present study has focused on the optimization of the HE processes through the development of an analytical model for the prediction of the demolding force as a function of temperature. This model allowed calculating the minimum demolding force to obtain regular micropillars without defects. We demonstrated that the results obtained by the analytical model agree with the experimental data. To address the importance of controlling accurately the fabricated microstructures, we seeded on the PCL scaffolds human stromal cell line (HS-5) and monocytic leukemia cell line (THP-1) to evaluate how the presence of regular or deformed pillars affect cells viability. In vitro viability results, scanning electron and fluorescence microscope imaging analysis show that the HS-5 preferentially grows on regular microstructured surfaces, while the THP-1 on irregular microstructured ones.

16.
Bioengineering (Basel) ; 7(1)2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32131459

RESUMO

Nowadays, the majority of the progress in the development of implantable neuroprostheses has been achieved by improving the knowledge of brain functions so as to restore sensorial impairments. Intracortical microstimulation (ICMS) is a widely used technique to investigate site-specific cortical responses to electrical stimuli. Herein, we investigated the neural modulation induced in the primary auditory cortex (A1) by an acousto-electric transduction of ultrasonic signals using a bio-inspired intracortical microstimulator. The developed electronic system emulates the transduction of ultrasound signals in the cochlea, providing bio-inspired electrical stimuli. Firstly, we identified the receptive fields in the primary auditory cortex devoted to encoding ultrasonic waves at different frequencies, mapping each area with neurophysiological patterns. Subsequently, the activity elicited by bio-inspired ICMS in the previously identified areas, bypassing the sense organ, was investigated. The observed evoked response by microstimulation resulted as highly specific to the stimuli, and the spatiotemporal dynamics of neural oscillatory activity in the alpha, beta, and gamma waves were related to the stimuli preferred by the neurons at the stimulated site. The alpha waves modulated cortical excitability only during the activation of the specific tonotopic neuronal populations, inhibiting neural responses in unrelated areas. Greater neuronal activity in the posterior area of A1 was observed in the beta band, whereas a gamma rhythm was induced in the anterior A1. The results evidence that the proposed bio-inspired acousto-electric ICMS triggers high-frequency oscillations, encoding information about the stimulation sites and involving a large-scale integration in the brain.

17.
Artigo em Inglês | MEDLINE | ID: mdl-31906326

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) is characterized by a prothrombotic state, predisposing to vascular complications. Some related markers, linking thrombophilia to hemostasis and inflammation, however, have been poorly explored in relation to patients' glycemia. We therefore investigated the association of laboratory hemostatic parameters, circulating adhesion molecules (ADMs), white blood cell (WBC) count, and neutrophil/lymphocyte ratio (NLR) with T2DM and glycemic control. RESEARCH DESIGN: In this study, 82 subjects, grouped into T2DM patients (n = 41) and healthy individuals (n = 41) were enrolled. To evaluate glycemic control, the T2DM cohort was expanded to 133 patients and sub-classified according to glycated hemoglobin (HbA1c) <7% and ≥ 7% (n = 58 and n = 75, respectively). We assessed glycemia, HbA1c, prothrombin time (PT), activated partial thromboplastin time (aPTT), fibrinogen, plasminogen activator inhibitor-1 (PAI-1), platelet and leukocyte parameters, vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), and selectins (E-, P-, L-). RESULTS: PT % activity, PAI-1, VCAM-1, WBC, and neutrophil counts were significantly higher in T2DM patients than in healthy subjects. Poor glycemic control (HbA1c ≥ 7%) was correlated with increased PT activity (p = 0.015), and higher levels of E-selectin (p = 0.009), P-selectin (p = 0.012), and NLR (p = 0.019). CONCLUSIONS: Both T2DM and poor glycemic control affect some parameters of hemostasis, inflammation, and adhesion molecules. Further studies are needed to establish their clinical utility as adjuvant markers for cardio-vascular risk in T2DM patients.


Assuntos
Moléculas de Adesão Celular , Diabetes Mellitus Tipo 2 , Hemostasia , Inflamação , Adulto , Biomarcadores/sangue , Glicemia/metabolismo , Doenças Cardiovasculares/sangue , Moléculas de Adesão Celular/fisiologia , Estudos de Coortes , Diabetes Mellitus Tipo 2/sangue , Selectina E , Feminino , Hemoglobinas Glicadas/análise , Índice Glicêmico , Humanos , Inflamação/sangue , Molécula 1 de Adesão Intercelular , Masculino , Pessoa de Meia-Idade , Selectina-P , Inibidor 1 de Ativador de Plasminogênio , Molécula 1 de Adesão de Célula Vascular
18.
Artigo em Inglês | MEDLINE | ID: mdl-31647427

RESUMO

Up to now, low-frequency ultrasonic transducers have been manufactured using different materials and technologies and have been inspired by the biological world, mainly by the biosonar of dolphins and bats. Our research moves in this context, which is dedicated to investigating the feasibility of developing a piezopolymer sensor capable of covering the wide frequency range of a bat's biosonar. We propose an ultrasonic sensor manufactured using a sheet of polyvinylidene fluoride curved according to a logarithmic spiral geometry as it is present in biological models of the cochlea. Experiments were carried out both in transmission and reception, and demonstrated that a spiral-shaped transducer can transmit and receive ultrasonic signals similar to the specific vocalizations of most of the bats in the range between 20 and 80 kHz. The resonant frequencies of the transducer were evaluated through a finite element analysis, in agreement with experimental data covering the entire broadband. During transmission, the sound pressure level showed a maximum value of 90 dB, while during reception, the sensitivity spanned from t103.8 up to t89.1 dB. Directivity measurements demonstrated omnidirectional properties both on horizontal and vertical planes, representing a breakthrough in the field of broadband ultrasonic sensors.


Assuntos
Cóclea , Modelos Biológicos , Transdutores , Ultrassom/instrumentação , Animais , Quirópteros/anatomia & histologia , Quirópteros/fisiologia , Cóclea/anatomia & histologia , Cóclea/fisiologia , Ecolocação/fisiologia , Desenho de Equipamento , Análise de Elementos Finitos , Polivinil/química
19.
Nanomaterials (Basel) ; 9(11)2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31752315

RESUMO

A straightforward and effective spin-coating technique at 120 °C was investigated for the deposition of a thin nanoporous layer with antireflection properties onto glass and indium tin oxide (ITO) coated glass. A mixture of zeolite 3A powder and high iodine value vegetable oil was deposited, creating a carbonic paste with embedded nanoporous grains. Experimental results evidenced excellent broadband antireflection over the visible-near-infrared wavelength range (450-850 nm), with a diffuse reflectance value of 1.67% and 1.79%. Structural and optical characteristics stabilized over time. The results are promising for the accessible and cost-effective fabrication of an antireflective surface for optoelectronic devices.

20.
Parkinsonism Relat Disord ; 67: 14-20, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31621599

RESUMO

INTRODUCTION: Apomorphine is a dopamine agonist used in Parkinson's disease (PD), which matches levodopa in terms of the magnitude of effect on the cardinal motor features, such as tremor and bradykinesia. The beneficial effect of this treatment on PD patients with tremor-dominant has widely been demonstrated, although the underlying neural correlates are unknown. We sought to examine the effects of apomorphine on topological characteristics of resting-state functional connectivity networks in tremor-dominant PD (tdPD) patients. METHODS: Sixteen tdPD patients were examined using a combined electromyography-functional magnetic resonance imaging approach. Patients were scanned twice following either placebo (subcutaneous injection of 1 mL saline solution) or 1 mg of apomorphine injection. Graph analysis methods were employed to investigate the modular organization of functional connectivity networks before and after drug treatment. RESULTS: After injection of apomorphine, evident reduction of tremor symptoms was mirrored by a significant increase in overall connectivity strength and reorganization of the modular structure of the basal ganglia and of the fronto-striatal module. Moreover, we found an increase in the centrality of motor and premotor regions. No differences were found between pre- and post-placebo sessions. CONCLUSION: These results provide new evidence about the effects of apomorphine at a large-scale neural network level showing that drug treatment modifies the brain functional organization of tdPD, increasing the overall resting-state functional connectivity strength, the segregation of striato-frontal regions and the integrative role of motor areas.


Assuntos
Apomorfina/farmacologia , Agonistas de Dopamina/farmacologia , Lobo Frontal/efeitos dos fármacos , Neostriado/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Tremor/tratamento farmacológico , Idoso , Apomorfina/uso terapêutico , Agonistas de Dopamina/uso terapêutico , Eletromiografia , Feminino , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/fisiopatologia , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neostriado/diagnóstico por imagem , Neostriado/fisiopatologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiopatologia , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/fisiopatologia , Método Simples-Cego , Tremor/diagnóstico por imagem , Tremor/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...