Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37345138

RESUMO

BACKGROUND AND PURPOSE: Stereotactic body radiotherapy (SBRT) has a consolidated role in the treatment of bone oligometastases from prostate cancer (PCa). While the evidence for spinal oligometastases SBRT was robust, its role in non-spinal-bone metastases (NSBM) is not standardized. In fact, there was no clear consensus about dose and target definition in this setting. The aim of our study was to evaluate efficacy, toxicity, and the pattern of relapse in SBRT delivered to NSBM from PCa. MATERIALS AND METHODS: From 2016 to 2021, we treated a series of oligo-NSBM from PCa with 68Ga-PSMA PET/CT-guided SBRT. The primary endpoint was local progression-free survival (LPFS). The secondary endpoints were toxicity, the pattern of intraosseous relapse, distant progression-free survival (DPFS), polimetastases-free survival (PMFS), and overall survival (OS). RESULTS: a total of 150 NSBM in 95 patients were treated with 30-35 Gy in five fractions. With a median follow-up of 26 months, 1- and 3 years LPFS was 96.3% and 89%, respectively. A biologically effective dose (BED) ≥ 198 Gy was correlated with improved LPFS (p = 0.007). Intraosseous relapse occurred in eight (5.3%) cases. Oligorecurrent disease was associated with a better PMFS compared to de novo oligometastatic disease (p = 0.001) and oligoprogressive patients (p = 0.007). No grade ≥ 3 toxicity occurred. CONCLUSION: SBRT is a safe and effective tool for NSBM from PCa in the oligometastatic setting. Intraosseous relapse was a relatively rare event. Predictive factors of the improved outcomes were defined.

2.
J Clin Med ; 11(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36431135

RESUMO

Introduction: The aim of our study was to evaluate the efficacy and toxicity of a daily adaptive MR-guided SBRT on 1.5 T MR-linac in patients affected by lymph node oligometastases from PCa. Materials and Methods: The present study is a prospective observational study conducted in a single institution (protocol n°: MRI/LINAC n. 23748). Patients with oligometastatic lymph nodes from PCa treated with daily adaptive MR-guided SBRT on 1.5 T MR-linac were included in the study. There was a minimum required follow-up of 3 months after SBRT. The primary end-point was local progression-free survival (LPFS). The secondary end-points were: nodal progression-free survival (NPFS), progression-free survival (PFS), and toxicity. Results: A total of 118 lymph node oligometastases from PCa were treated with daily adaptive 1.5 T MR-guided SBRT in 63 oligometastatic patients. Of the patients, 63.5% were oligorecurrent and 36.5% were oligoprogressive. The two-year LPFS was 90.7%. The median NPFS was 22.3 months and the 2-year NPFS was 46.5%. Receiving hormone therapy before SBRT was correlated with a lower NPFS at the multivariate analysis (1 y NPFS 87.1% versus 42.8%; p = 0.002-HR 0.199, 95% CI 0.073-0.549). Furthermore, the oligorecurrent state during ADT was correlated with a lower NPFS than was the oligoprogressive state. The median PFS was 10.3 months and the 2-year PFS was 32.4%. Patients treated with hormone therapy before SBRT had a significantly lower 1-year PFS the others (28% versus 70.4%; p = 0.01-HR 0.259, 95% CI 0.117-0.574). No acute and late toxicities occurred during treatment. Conclusions: The present study is the largest prospective study of 1.5 T lymph node SBRT on MR-linac in patients with PCa. Lymph node SBRT by 1.5 T MR-linac provides high local control rates with an excellent toxicity profile.

3.
J Neurosci ; 39(2): 281-294, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30459226

RESUMO

To reduce statistical redundancy of natural inputs and increase the sparseness of coding, neurons in primary visual cortex (V1) show tuning for stimulus size and surround suppression. This integration of spatial information is a fundamental, context-dependent neural operation involving extensive neural circuits that span across all cortical layers of a V1 column, and reflects both feedforward and feedback processing. However, how spatial integration is dynamically coordinated across cortical layers remains poorly understood. We recorded single- and multiunit activity and local field potentials across V1 layers of awake mice (both sexes) while they viewed stimuli of varying size and used dynamic Bayesian model comparisons to identify when laminar activity and interlaminar functional interactions showed surround suppression, the hallmark of spatial integration. We found that surround suppression is strongest in layer 3 (L3) and L4 activity, where suppression is established within ∼10 ms after response onset, and receptive fields dynamically sharpen while suppression strength increases. Importantly, we also found that specific directed functional connections were strongest for intermediate stimulus sizes and suppressed for larger ones, particularly for connections from L3 targeting L5 and L1. Together, the results shed light on the different functional roles of cortical layers in spatial integration and on how L3 dynamically coordinates activity across a cortical column depending on spatial context.SIGNIFICANCE STATEMENT Neurons in primary visual cortex (V1) show tuning for stimulus size, where responses to stimuli exceeding the receptive field can be suppressed (surround suppression). We demonstrate that functional connectivity between V1 layers can also have a surround-suppressed profile. A particularly prominent role seems to have layer 3, the functional connections to layers 5 and 1 of which are strongest for stimuli of optimal size and decreased for large stimuli. Our results therefore point toward a key role of layer 3 in coordinating activity across the cortical column according to spatial context.


Assuntos
Percepção Espacial/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Algoritmos , Animais , Potenciais Evocados , Retroalimentação Fisiológica , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estimulação Luminosa , Campos Visuais , Vias Visuais/fisiologia
4.
Curr Biol ; 24(24): 2899-907, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25484299

RESUMO

BACKGROUND: Neural responses in visual cortex depend not only on sensory input but also on behavioral context. One such context is locomotion, which modulates single-neuron activity in primary visual cortex (V1). How locomotion affects neuronal populations across cortical layers and in precortical structures is not well understood. RESULTS: We performed extracellular multielectrode recordings in the visual system of mice during locomotion and stationary periods. We found that locomotion influenced activity of V1 neurons with a characteristic laminar profile and shaped the population response by reducing pairwise correlations. Although the reduction of pairwise correlations was restricted to cortex, locomotion slightly but consistently increased firing rates and controlled tuning selectivity already in the dorsolateral geniculate nucleus (dLGN) of the thalamus. At the level of the eye, increases in locomotion speed were associated with pupil dilation. CONCLUSIONS: These findings document further, nonmultiplicative effects of locomotion, reaching earlier processing stages than cortex.


Assuntos
Corpos Geniculados/fisiologia , Locomoção , Neurônios/fisiologia , Córtex Visual/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Condicionamento Físico Animal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...