Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pediatr ; 7: 446, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781523

RESUMO

Fibrosis is an irreversible remodeling process characterized by the deposition of collagen in the extracellular matrix of various organs through a variety of pathologies in children, leading to the stiffening of healthy tissues and organ dysfunction. Despite the prevalence of fibrotic disease in children, large gaps exist in our understanding of the mechanisms that lead to fibrosis, and there are currently no therapies to treat or reverse it. We previously observed that castration significantly reduces fibrosis in the bladders of male mice that have been partially obstructed. Here, we investigated if the expression of androgen response genes were altered in mouse bladders after partial bladder outlet obstruction (PO). Using a QPCR microarray and QRTPCR we found that PO was sufficient to increase expression of the androgen response gene Nkx3.1. Consistent with this was an increase in the expression of NKX3.1 protein. Immunofluorescent antibody localization demonstrated nuclear NKX3.1 in most bladder cells after PO. We tested if genetic deletion of Nkx3.1 alters remodeling of the bladder wall after PO. After PO, Nkx3.1 KO/KO bladders underwent remodeling, demonstrating smaller bladder area, thickness, and bladder: body weight ratios than obstructed, wild type controls. Remarkably, Nkx3.1 KO/KO specifically affected histological parameters of fibrosis, including reduced collagen to muscle ratio. Loss of Nkx3.1 altered collagen and smooth muscle cytoskeletal gene expression following PO which supported our histologic findings. Together these findings indicated that after PO, Nkx3.1 expression is induced in the bladder and that it mediates important pathways that lead to tissue fibrosis. As Nkx3.1 is an androgen response gene, our data suggest a possible mechanism by which fibrosis is mediated in male mice and opens the possibility of a molecular pathway mediated by NKX3.1 that could explain sexual dimorphism in bladder fibrosis.

2.
Am J Physiol Renal Physiol ; 317(6): F1503-F1512, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31532245

RESUMO

We have defined a population of stem cell antigen (Sca)-1+/CD34+/lin- mesenchymal stem cells in the mouse urinary bladder. These cells are reduced after partial bladder outlet obstruction (PO). To test the role of Sca-1 expressed by these cells, we analyzed bladders from Sca-1 knockout (KO) mice in both uninjured male mice and male mice subjected to PO. We found that loss of Sca-1 alone had little effect on bladder development or function but reduced the total number of mesenchymal stem cells by 30%. After PO, bladders from Sca-1-null KO male mice were larger, with more collagen and less muscle, than obstructed wild-type mice. Steady-state levels of caldesmon were significantly reduced and levels of fibroblast-specific protein 1 were significantly increased in Sca-1 KO mice compared with wild-type mice after PO. In investigating the effects of PO on cell proliferation, we found that loss of Sca-1 changed the timing of cell division in CD34+/lin-, collagen-producing, and smooth muscle cells. PO in combination with loss of Sca-1 drastically reduced the ability of CD34+/lin- cells to form colonies in vitro. Our findings therefore support the hypothesis that Sca-1 protects the bladder from fibrotic remodeling after obstruction, in part by influencing the proliferation of cells responding to the injury.


Assuntos
Antígenos Ly/uso terapêutico , Proteínas de Membrana/uso terapêutico , Bexiga Urinária/patologia , Animais , Antígenos/imunologia , Antígenos/uso terapêutico , Antígenos CD34/metabolismo , Antígenos Ly/genética , Antígenos Ly/imunologia , Proteínas de Ligação a Calmodulina/metabolismo , Proliferação de Células , Fibrose , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Células-Tronco Mesenquimais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo , Substâncias Protetoras , Células-Tronco , Obstrução do Colo da Bexiga Urinária/patologia
3.
PLoS One ; 13(11): e0206436, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30475828

RESUMO

Cystectomy is the removal of all or part of the urinary bladder. It has been observed that there is significant regrowth of the bladder after partial cystectomy and this has been proposed to be through regeneration of the organ. Regrowth of tissue in mammals has been proposed to involve compensatory mechanisms that share many characteristics of true regeneration, like the growth of specialized structures such as blood vessels or nerves. However, the overall structure of the normal organ is not achieved. Here we tested if bladder growth after subtotal cystectomy (STC, removal of 50% of the bladder) was compensatory or regenerative. To do this we subjected adult female mouse bladders to STC and assessed regrowth using several established cellular parameters including histological, gene expression, cytokine accumulation and cell proliferation studies. Bladder function was analyzed using cystometry and the voiding stain on paper (VSOP) technique. We found that STC bladders were able to increase their ability to hold urine with the majority of volume restoration occurring within the first two weeks. Regenerating bladders had thinner walls with less mean muscle thickness, and they showed increased collagen deposition at the incision as well as throughout the bladder wall suggesting that fibrosis was occurring. Cell populations differed in their response to injury with urothelial regeneration complete by day 7, but stromal and detrusor muscle still incomplete after 8wks. Cells incorporated EdU when administered at the time of surgery and tracing of EdU positive cells over time indicated that many newborn cells originate at the incision and move mediolaterally. Basal urothelial cells and bladder mesenchymal stem cells but not smooth muscle cells significantly incorporated EdU after STC. Since anti-inflammatory cytokines play a role in regeneration, we analyzed expressed cytokines and found that no anti-inflammatory cytokines were present in the bladder 1wk after STC. Our findings suggest that bladder regrowth after cystectomy is compensatory and functions to increase the volume that the bladder can hold. This finding sets the stage for understanding how the bladder responds to cystectomy and how this can be improved in patients after suffering bladder injury.


Assuntos
Cistectomia , Regeneração , Bexiga Urinária/fisiologia , Bexiga Urinária/cirurgia , Animais , Cicatriz/etiologia , Cicatriz/genética , Colágeno/metabolismo , Cistectomia/efeitos adversos , Citocinas/metabolismo , Feminino , Fibrose , Regulação da Expressão Gênica , Camundongos , Recuperação de Função Fisiológica , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia
4.
Front Pediatr ; 5: 132, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28638819

RESUMO

Lower urinary tract symptoms secondary to posterior urethral valves (PUV) arise in boys during adolescence. The reasons for this have previously been attributed to increased urine output as boys experience increased growth. Additionally, there are few choices for clinicians to effectively treat these complications. We formed the new hypothesis that increased androgen levels at this time of childhood development could play a role at the cellular level in obstructed bladders. To test this hypothesis, we investigated the role of testosterone on bladder detrusor muscle following injury from partial bladder outlet obstruction (PO) in mice. A PO model was surgically created in juvenile male mice. A group of mice were castrated by bilateral orchiectomy at time of obstruction (CPO). Testosterone cypionate was administered to a group of castrated, obstructed mice (CPOT). Bladder function was assessed by voiding stain on paper (VSOP). Bladders were analyzed at 7 and 28 days by weight and histology. Detrusor collagen to smooth muscle ratio (Col/SM) was calculated using Masson's trichrome stain. All obstructed groups had lower max voided volumes (MVV) than sham mice at 1 day. Hormonally intact mice (PO) continued to have lower MVV at 7 and 28 days while CPO mice improved to sham levels at both time points. In accordance, PO mice had higher bladder-to-body weight ratios than CPO and sham mice demonstrating greater bladder hypertrophy. Histologically, Col/SM was lower in sham and CPO mice. When testosterone was restored in CPOT mice, MVV remained low at 7 and 28 days compared to CPO and bladder-to-body weight ratios were also greater than CPO. Histologic changes were also seen in CPOT mice with higher Col/SM than sham and CPO mice. In conclusion, our findings support a role for testosterone in the fibrotic changes that occur after obstruction in male mice. This suggests that while other changes may occur in adolescent boys that cause complication in boys with PUV, the bladder itself responds to testosterone at the cellular level. This opens the door to a new understanding of pathways that influence bladder fibrosis and could lead to novel approaches to treat boys with PUV.

5.
PLoS One ; 10(11): e0141437, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26540309

RESUMO

Bladder fibrosis is an undesired end point of injury of obstruction and often renders the smooth muscle layer noncompliant. In many cases, the long-term effect of bladder fibrosis is renal failure. Despite our understanding of the progression of this disease, little is known about the cellular mechanisms that lead to a remodeled bladder wall. Resident stem (progenitor) cells have been identified in various organs such as the brain, heart and lung. These cells function normally during organ homeostasis, but become dysregulated after organ injury. Here, we aimed to characterize a mesenchymal progenitor cell population as a first step in understanding its role in bladder fibrosis. Using fluorescence activated cell sorting (FACS), we identified a Sca-1+/ CD34+/ lin- (PECAM-: CD45-: Ter119-) population in the adult murine bladder. These cells were localized to the stromal layer of the adult bladder and appeared by postnatal day 1. Cultured Sca-1+/ CD34+/ lin- bladder cells self-renewed, formed colonies and spontaneously differentiated into cells expressing smooth muscle genes. These cells differentiated into other mesenchymal lineages (chondrocytes, adipocytes and osteocytes) upon culture in induction medium. Both acute and partial obstruction of the bladder reduced expression of CD34 and changed localization of Sca-1 to the urothelium. Partial obstruction resulted in upregulation of fibrosis genes within the Sca-1+/CD34+/lin- population. Our data indicate a resident, mesenchymal stem cell population in the bladder that is altered by bladder obstruction. These findings provide new information about the cellular changes in the bladder that may be associated with bladder fibrosis.


Assuntos
Células-Tronco Mesenquimais/fisiologia , Bexiga Urinária/citologia , Animais , Antígenos CD34/metabolismo , Antígenos Ly/metabolismo , Linhagem da Célula , Células Cultivadas , Fibrose , Citometria de Fluxo , Imunofluorescência , Proteínas de Membrana/metabolismo , Camundongos , Reação em Cadeia da Polimerase , Bexiga Urinária/patologia , Obstrução do Colo da Bexiga Urinária/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...