Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 16(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36678545

RESUMO

Green chemistry is a pharmaceutical industry tool, which, when implemented correctly, can lead to a minimization in resource consumption and waste. An aqueous extract of Salix alba L. was employed for the efficient and rapid synthesis of silver/gold particle nanostructures via an inexpensive, nontoxic and eco-friendly procedure. The nanoparticles were physicochemically characterized using ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), X-ray diffraction (XRD) and scanning electron microscopy (SEM), with the best stability of up to one year in the solution obtained for silver nanoparticles without any chemical additives. A comparison of the antimicrobial effect of silver/gold nanoparticles and their formulations (hydrogels, ointments, aqueous solutions) showed that both metallic nanoparticles have antibacterial and antibiofilm effects, with silver-based hydrogels having particularly high antibiofilm efficiency. The highest antibacterial and antibiofilm efficacies were obtained against Pseudomonas aeruginosa when using silver nanoparticle hydrogels, with antibiofilm efficacies of over 75% registered. The hydrogels incorporating green nanoparticles displayed a 200% increased bacterial efficiency when compared to the controls and their components. All silver nanoparticle formulations were ecologically obtained by "green synthesis" and were shown to have an antimicrobial effect or potential as keratinocyte-acting pharmaceutical substances for ameliorating infectious psoriasis wounds.

2.
Sensors (Basel) ; 21(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807640

RESUMO

Developing a sensing layer with high electroactive properties is an important aspect for proper functionality of a wearable sensor. The polymeric nanocomposite material obtained by a simple electropolymerization on gold interdigitated electrodes (IDEs) can be optimized to have suitable conductive properties to be used with direct current (DC) measurements. A new layer based on polyaniline:poly(4-styrenesulfonate) (PANI:PSS)/single-walled carbon nanotubes (SWCNT)/ferrocene (Fc) was electrosynthesized and deposed on interdigital transducers (IDT) and was characterized in detail using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoemission spectroscopy (XPS), and X-ray diffraction (XRD). The sensor characteristics of the material towards carbon monoxide (CO) in the concentration range of 10-300 ppm were examined, showing a minimal relative humidity interference of only 1% and an increase of sensitivity with the increase of CO concentration. Humidity interference could be controlled by the number of CV cycles when a compact layer was formed and the addition of Fc played an important role in the decrease of humidity. The results for CO detection can be substantially improved by optimizing the number of deposition cycles and enhancing the Fc concentration. The material was developed for selective detection of CO in real environmental conditions and shows good potential for use in a wearable sensor.


Assuntos
Nanotubos de Carbono , Dispositivos Eletrônicos Vestíveis , Eletrodos , Ouro , Metalocenos
3.
Sensors (Basel) ; 21(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809497

RESUMO

In recent years, research into the field of materials for flexible sensors and fabrication techniques directed towards wearable devices has helped to raise awareness of the need for new sensors with healthcare applicability. Our goal was to create a wearable flexible pressure sensor that could be integrated into a clinically approved blood pressure monitoring device. The sensor is built from a microfluidic channel encapsulated between two polymer layers, one layer being covered by metal transducers and the other being a flexible membrane containing the microfluidic channel, which also acts as a sealant for the structure. The applied external pressure deforms the channel, causing changes in resistance to the microfluidic layer. Electrical characterization has been performed in 5 different configurations, using alternating current (AC) and (DC) direct current measurements. The AC measurements for the fabricated pressure sensor resulted in impedance values at tens of hundreds of kOhm. Our sensor proved to have a high sensitivity for pressure values between 0 and 150 mm Hg, being subjected to repeatable external forces. The novelty presented in our work consists in the unique technological flow for the fabrication of the flexible wearable pressure sensor. The proposed miniaturized pressure sensor will ensure flexibility, low production cost and ease of use. It is made of very sensitive microfluidic elements and biocompatible materials and can be integrated into a wearable cuffless device for continuous blood pressure monitoring.


Assuntos
Dispositivos Eletrônicos Vestíveis , Pressão Sanguínea , Impedância Elétrica , Microfluídica , Monitorização Fisiológica
4.
Talanta ; 210: 120643, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31987187

RESUMO

Two new biomimetic sensors for the detection of adiponectin (A) and leptin (L) through molecularly imprinted polymers (MIPs) onto gold working electrodes (GWEs) were fabricated. Based on electrochemical impedance spectroscopy (EIS) results and cyclic voltammetry (CV) characteristics recorded in the development stages of the fabricated sensors, the sensors were electrochemically optimized and used in an integrated microfluidic platform to detect adiponectin/leptin via conductance signals and non-imprinted electrodes were used as references. To overcome the limitation of the low response signals after template binding non-conductive polyphenol (PP) and poliscopoletin (PS) were used for templates formation. Under optimized experimental conditions the conductance and resistance signals were obtained in the linear range of 0-50 µg ml-1 for A and 1-32 ng∙ml-1 for L with low limits of detection (0.25 µg ml-1 for A and 0.110 ng ml-1 for L). The dedicated platform exhibited an excellent response with great selectivity and stability. Finally, the proposed biomimetic sensors were successfully applied to enable the determination of A and L in human patient's serum with very high accuracy when compared to enzyme-linked immunosorbent assay ELISA reference methods.


Assuntos
Adiponectina/sangue , Materiais Biocompatíveis/química , Técnicas Biossensoriais , Técnicas Eletroquímicas , Leptina/sangue , Técnicas Biossensoriais/instrumentação , Impedância Elétrica , Técnicas Eletroquímicas/instrumentação , Humanos
5.
ACS Biomater Sci Eng ; 6(7): 3811-3820, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33463317

RESUMO

The environmental monitoring of Ni is targeted at a threshold limit value of 0.34 µM, as set by the World Health Organization. This sensitivity target can usually only be met by time-consuming and expensive laboratory measurements. There is a need for inexpensive, field-applicable methods, even if they are only used for signaling the necessity of a more accurate laboratory investigation. In this work, bioengineered, protein-based sensing layers were developed for Ni detection in water. Two bacterial Ni-binding flagellin variants were fabricated using genetic engineering, and their applicability as Ni-sensitive biochip coatings was tested. Nanotubes of mutant flagellins were built by in vitro polymerization. A large surface density of the nanotubes on the sensor surface was achieved by covalent immobilization chemistry based on a dithiobis(succimidyl propionate) cross-linking method. The formation and density of the sensing layer was monitored and verified by spectroscopic ellipsometry and atomic force microscopy. Cyclic voltammetry (CV) measurements revealed a Ni sensitivity below 1 µM. It was also shown that, even after two months of storage, the used sensors can be regenerated and reused by rinsing in a 10 mM solution of ethylenediaminetetraacetic acid at room temperature.


Assuntos
Ouro , Nanotubos , Engenharia Biomédica , Microscopia de Força Atômica , Água
6.
Surg Technol Int ; 33: 361-365, 2018 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-30204924

RESUMO

OBJECT: Backpacks are standard load carriers for people of all ages, especially school children and the military. Previous studies have described the impact of the forces exerted by backpacks on load distribution, back pain, and gait. The objective of this study was to use finite element analysis (FEA) to assess the effects of incremental weights in a backpack on the spine. METHODS: To assess the forces experienced by the spine under the incremental addition of weight to a backpack, we performed a finite element simulation using commercially available 'BodyParts3D/Anatomography' data, which were imported into FEA software. We studied two different scenarios: 1) a regular backpack with incrementally placed weights using both shoulder straps with the spine in a neutral position, and 2) a regular backpack with incrementally placed weights using both shoulder straps with the spine tilted forward 20 degrees. The spine model was physiologically accurate. RESULTS: For all of the added weights examined (1-100 pounds; 0.45-45.36 kg), the force experienced by the neutral spine was 7.2-fold the added weight. For the 20 degrees-forward posture, this value rose to 11.6-fold. CONCLUSIONS: These findings should help to clarify the forces experienced by the spine due to objects in a backpack. For example, this should help spinal surgeons to better understand the tremendous importance of sagittal plane alignment in planning their surgical reconstructions.


Assuntos
Modelos Biológicos , Coluna Vertebral/anatomia & histologia , Coluna Vertebral/fisiologia , Suporte de Carga/fisiologia , Adulto , Dorso/fisiologia , Humanos , Ombro/fisiologia
7.
Beilstein J Nanotechnol ; 7: 2045-2056, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28144552

RESUMO

A series of SnO2-ZnO composite nanostructured (thin) films with different amounts of SnO2 (from 0 to 50 wt %) was prepared and deposited on a miniaturized porous alumina transducer using the sol-gel and dip coating method. The transducer, developed by our research group, contains Au interdigital electrodes on one side and a Pt heater on the other side. The sensing films were characterized using SEM and AFM techniques. Highly toxic and flammable gases (CO, CO2, CH4, and C3H8) were tested under lab conditions (carrier gas was dry air) using a special gas sensing cell developed by our research group. The gas concentrations varied between 5 and 2000 ppm and the optimum working temperatures were in the range of 210-300 °C. It was found that the sensing performance was influenced by the amount of oxide components present in the composite material. Improved sensing performance was achieved for the ZnO (98 wt %)-SnO2 (2 wt %) composite as compared to the sensors containing only the pristine oxides. The sensor response, cross-response and recovery characteristics of the analyzed materials are reported. The high sensitivity (RS = 1.21) to low amounts of CO (5 ppm) was reported for the sensor containing a composite sensitive film with ZnO (98 wt %)-SnO2 (2 wt %). This sensor response to CO was five times higher as compared to its response to CO2, CH4, and C3H8, thus the sensor is considered to be selective for CO under these test conditions.

8.
Sensors (Basel) ; 12(8): 11372-90, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23112661

RESUMO

The following paper describes the design and functions of a miniaturized integrated platform for optical and electrical monitoring of cell cultures and the necessary steps in the fabrication and testing of a silicon microchip Micro ElectroMechanical Systems (MEMS)-based technology for cell data recording, monitoring and stimulation. The silicon microchip consists of a MEMS machined device containing a shank of 240 µm width, 3 mm long and 50 µm thick and an enlarged area of 5 mm × 5 mm hosting the pads for electrical connections. Ten platinum electrodes and five sensors are placed on the shank and are connected with the external electronics through the pads. The sensors aim to monitor the pH, the temperature and the impedance of the cell culture. The electrodes are bidirectional and can be used both for electrical potential recording and stimulation of cells. The fabrication steps are presented, along with the electrical and optical characterization of the system. The target of the research is to develop a new and reconfigurable platform according to the particular applications needs, as a tool for the biologist, chemists and medical doctors working is the field of cell culture monitoring in terms of growth, maintenance conditions, reaction to electrical or chemical stimulation (drugs, toxicants, etc.). HaCaT (Immortalised Human Keratinocyte) cell culture has been used for demonstration purposes in order to provide information on the platform electrical and optical functions.


Assuntos
Técnicas de Cultura de Células/instrumentação , Sistemas Microeletromecânicos/instrumentação , Imagem Óptica/instrumentação , Compostos de Anilina/química , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Condutividade Elétrica , Desenho de Equipamento , Humanos , Concentração de Íons de Hidrogênio , Sistemas Microeletromecânicos/métodos , Microeletrodos , Nanofibras , Imagem Óptica/métodos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...