Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
JACC Cardiovasc Interv ; 17(9): 1134-1144, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38749594

RESUMO

BACKGROUND: Limited comparative data exist on different interventional strategies for endovascular revascularization of complex femoropopliteal interventions. OBJECTIVES: In this study, the authors aimed to compare a stent-avoiding (SA) vs a stent-preferred (SP) strategy, promoting optimal lesion preparation and the use of drug-eluting technologies in both arms. METHODS: Within a prospective, multicenter, pilot study, 120 patients with symptomatic complex femoropopliteal lesions (Rutherford classification 2-4, mean lesion length 187.7 ± 78.3 mm, 79.2% total occlusions) were randomly assigned in a 1:1 fashion to endovascular treatment with either paclitaxel-coated balloons or polymer-coated, paclitaxel-eluting stents. Lesion preparation including the use of devices for plaque modification and/or removal was at the operators' discretion in both treatment arms. RESULTS: In the SA group, lesion preparation was more frequently performed (71.7% SA [43/60] vs 51.7% [31/60] SP; P = 0.038) with a high provisional stenting rate (48.3% [29/60]). At the 12-month follow-up, primary patency was 78.2% (43/55) in the SA group and 78.6% (44/56) in the SP group (P = 1.0; relative risk: 0.995; 95% CI: 0.818-1.210). Freedom from major adverse events was determined in 93.1% (54/58) in the SA group and in 94.9% (56/59) in the SP group (P = 0.717; relative risk: 0.981; 95% CI: 0.895-1.075), with all adverse events attributable to clinically driven target lesion revascularization. CONCLUSIONS: Both endovascular strategies promoting lesion preparation before the use of drug-eluting devices suggest promising efficacy and safety results in complex femoropopliteal procedures with a high proportion of total occlusions through 12 months. Ongoing follow-up will show whether different results emerge over time. (Best Endovascular Strategy for Complex Lesions of the Superficial Femoral Artery [BEST-SFA]; NCT03776799).


Assuntos
Fármacos Cardiovasculares , Materiais Revestidos Biocompatíveis , Stents Farmacológicos , Artéria Femoral , Paclitaxel , Doença Arterial Periférica , Artéria Poplítea , Desenho de Prótese , Grau de Desobstrução Vascular , Humanos , Artéria Poplítea/diagnóstico por imagem , Artéria Poplítea/fisiopatologia , Artéria Femoral/diagnóstico por imagem , Artéria Femoral/fisiopatologia , Masculino , Feminino , Idoso , Doença Arterial Periférica/terapia , Doença Arterial Periférica/diagnóstico por imagem , Doença Arterial Periférica/fisiopatologia , Estudos Prospectivos , Paclitaxel/administração & dosagem , Fatores de Tempo , Fármacos Cardiovasculares/administração & dosagem , Fármacos Cardiovasculares/efeitos adversos , Pessoa de Meia-Idade , Resultado do Tratamento , Projetos Piloto , Angioplastia com Balão/instrumentação , Angioplastia com Balão/efeitos adversos , Fatores de Risco , Idoso de 80 Anos ou mais , Dispositivos de Acesso Vascular
2.
Nat Commun ; 14(1): 3749, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353496

RESUMO

Coccolithophores are globally abundant, calcifying microalgae that have profound effects on marine biogeochemical cycles, the climate, and life in the oceans. They are characterized by a cell wall of CaCO3 scales called coccoliths, which may contribute to their ecological success. The intricate morphologies of coccoliths are of interest for biomimetic materials synthesis. Despite the global impact of coccolithophore calcification, we know little about the molecular machinery underpinning coccolithophore biology. Working on the model Emiliania huxleyi, a globally distributed bloom-former, we deploy a range of proteomic strategies to identify coccolithogenesis-related proteins. These analyses are supported by a new genome, with gene models derived from long-read transcriptome sequencing, which revealed many novel proteins specific to the calcifying haptophytes. Our experiments provide insights into proteins involved in various aspects of coccolithogenesis. Our improved genome, complemented with transcriptomic and proteomic data, constitutes a new resource for investigating fundamental aspects of coccolithophore biology.


Assuntos
Haptófitas , Proteômica , Calcificação Fisiológica/genética , Oceanos e Mares , Genômica , Haptófitas/genética , Haptófitas/metabolismo
3.
Global Health ; 18(1): 86, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253760

RESUMO

BACKGROUND: Unlike most other commodities, rare earth elements (REEs) are part of a wide range of applications needed for daily life all over the world. These applications range from cell phones to electric vehicles to wind turbines. They are often declared as part of "green technology" and, therefore, often called "green elements". However, their production and use are not only useful but also risky to the environment and human health, as many studies have shown. Consequently, the range of global research efforts is broad and highly variable, and therefore difficult to capture and assess. Hence, this study aims to assess the global parameters of global research on REE in the context of environment and health (REEeh). In addition to established bibliometric parameters, advanced analyses using market driver and scientific infrastructure values were carried out to provide deep insight into incentives, necessities, and barriers to international research. RESULTS: The focus of REE research is in line with national aspirations, especially from the major global players, China and the USA. Whereas globally, regional research interests are related to market interests, as evidenced by the inclusion of drivers such as electric vehicles, wind turbines, and permanent magnets. The topics receiving the most attention are related to gadolinium used for magnetic resonance imaging and the use of ceria nanoparticles. Since both are used for medical purposes, the medical research areas are equally profiled and mainly addressed in high-income countries. Nevertheless, environmental issues are increasingly in focus. CONCLUSIONS: There is still a need for research that is independent and open-ended. For this, market-independent technologies, substitutes and recycling of REEs need to be addressed scientifically. The results of this study are relevant for all stakeholders, from individual scientists to planners to funders, to improve future research strategies in line with these research mandates.


Assuntos
Gadolínio , Metais Terras Raras , China , Gadolínio/análise , Humanos , Imãs , Metais Terras Raras/análise , Reciclagem
4.
PLoS One ; 17(6): e0269307, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35749399

RESUMO

The plant genus Oenothera has played an important role in the study of plant evolution of genomes and plant defense and reproduction. Here, we build on the 1kp transcriptomic dataset by creating 44 new transcriptomes and analyzing a total of 63 transcriptomes to present a large-scale comparative study across 29 Oenothera species. Our dataset included 30.4 million reads per individual and 2.3 million transcripts on average. We used this transcriptome resource to examine genome-wide evolutionary patterns and functional diversification by searching for orthologous genes and performed gene family evolution analysis. We found wide heterogeneity in gene family evolution across the genus, with section Oenothera exhibiting the most pronounced evolutionary changes. Overall, more significant gene family expansions occurred than contractions. We also analyzed the molecular evolution of phenolic metabolism by retrieving proteins annotated for phenolic enzymatic complexes. We identified 1,568 phenolic genes arranged into 83 multigene families that varied widely across the genus. All taxa experienced rapid phenolic evolution (fast rate of genomic turnover) involving 33 gene families, which exhibited large expansions, gaining about 2-fold more genes than they lost. Upstream enzymes phenylalanine ammonia-lyase (PAL) and 4-coumaroyl: CoA ligase (4CL) accounted for most of the significant expansions and contractions. Our results suggest that adaptive and neutral evolutionary processes have contributed to Oenothera diversification and rapid gene family evolution.


Assuntos
Oenothera biennis , Oenothera , Onagraceae , Evolução Molecular , Redes e Vias Metabólicas , Família Multigênica , Oenothera/genética , Oenothera biennis/genética , Filogenia , Transcriptoma
5.
NAR Genom Bioinform ; 4(2): lqac027, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35372837

RESUMO

Plant mitochondrial genomes display an enormous structural complexity, as recombining repeat-pairs lead to the generation of various sub-genomic molecules, rendering these genomes extremely challenging to assemble. We present a novel bioinformatic data-processing pipeline called SAGBAC (Semi-Automated Graph-Based Assembly Curator) that identifies recombinogenic repeat-pairs and reconstructs plant mitochondrial genomes. SAGBAC processes assembly outputs and applies our novel ISEIS (Iterative Sequence Ends Identity Search) algorithm to obtain a graph-based visualization. We applied this approach to three mitochondrial genomes of evening primrose (Oenothera), a plant genus used for cytoplasmic genetics studies. All identified repeat pairs were found to be flanked by two alternative and unique sequence-contigs defining so-called 'double forks', resulting in four possible contig-repeat-contig combinations for each repeat pair. Based on the inferred structural models, the stoichiometry of the different contig-repeat-contig combinations was analyzed using Illumina mate-pair and PacBio RSII data. This uncovered a remarkable structural diversity of the three closely related mitochondrial genomes, as well as substantial phylogenetic variation of the underlying repeats. Our model allows predicting all recombination events and, thus, all possible sub-genomes. In future work, the proposed methodology may prove useful for the investigation of the sub-genome organization and dynamics in different tissues and at various developmental stages.

6.
Nat Plants ; 8(3): 245-256, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35301443

RESUMO

The development of technologies for the genetic manipulation of mitochondrial genomes remains a major challenge. Here we report a method for the targeted introduction of mutations into plant mitochondrial DNA (mtDNA) that we refer to as transcription activator-like effector nuclease (TALEN) gene-drive mutagenesis (GDM), or TALEN-GDM. The method combines TALEN-induced site-specific cleavage of the mtDNA with selection for mutations that confer resistance to the TALEN cut. Applying TALEN-GDM to the tobacco mitochondrial nad9 gene, we isolated a large set of mutants carrying single amino acid substitutions in the Nad9 protein. The mutants could be purified to homochondriomy and stably inherited their edited mtDNA in the expected maternal fashion. TALEN-GDM induces both transitions and transversions, and can access most nucleotide positions within the TALEN binding site. Our work provides an efficient method for targeted mitochondrial genome editing that produces genetically stable, homochondriomic and fertile plants with specific point mutations in their mtDNA.


Assuntos
Genoma Mitocondrial , DNA de Plantas/genética , Genoma de Planta , Mutagênese , Mutação Puntual
7.
J Endovasc Ther ; 29(5): 798-807, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34964369

RESUMO

PURPOSE: To evaluate the use of the GoBack-catheter (Upstream Peripheral Technologies) in complex revascularizations in lower limb arteries. MATERIALS AND METHODS: In this retrospective single-center study, the results of the first 100 consecutive patients including 101 limb-revascularizations, performed between May 2018 and July 2020 with the study device, were analyzed. In all cases, guidewire-crossing failed, and all lesions were chronic total occlusions (CTO), either de novo, reocclusions, or in-stent reocclusions. Successful crossing was defined as passing the CTO using the study device. Patency at discharge and after 30 days was defined as less than 50% restenosis on duplex sonography, without target lesion revascularization. RESULTS: Median lesion length was 24 cm and 38 patients (37.6%) had a calcium grading according to the peripheral arterial calcium scoring system (PACSS) of 4 or 5. In 20.8% of patients, an occluded stent was treated. CTOs involved the femoropopliteal segment in 91.1%, iliac arteries in 5.9%, and tibial arteries in 7.9%. The GoBack-catheter was employed for entering into or crossing through parts or the full length of a CTO or an occluded stent as well as for re-entering into the true lumen after subintimal crossing. The device was used via contralateral and ipsilateral antegrade as well as retrograde access with an overall technical success rate of 92.1%. In 3 patients minor bleeding occurred at the crossing or re-entry site, which were managed conservatively. Thirty-day adverse limb events comprised minor amputations in 4 patients (4.0%), 1 major amputation (1.0%), and reocclusions in 7 limbs (6.9%). CONCLUSION: The new GoBack-catheter offers versatile endovascular applicability for complex CTO recanalization in a broad range of peripheral vascular interventions with a high technical success and low complication rate.


Assuntos
Arteriopatias Oclusivas , Doença Arterial Periférica , Arteriopatias Oclusivas/diagnóstico por imagem , Arteriopatias Oclusivas/terapia , Cálcio , Catéteres , Doença Crônica , Artéria Femoral/diagnóstico por imagem , Artéria Femoral/cirurgia , Humanos , Extremidade Inferior , Doença Arterial Periférica/complicações , Doença Arterial Periférica/diagnóstico por imagem , Doença Arterial Periférica/terapia , Artéria Poplítea/cirurgia , Estudos Retrospectivos , Resultado do Tratamento
8.
Glob Chall ; 5(11): 2100044, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34754508

RESUMO

Microplastics have become a global concern due to their persistent properties and impacts on the marine environment. This research investigates pollution sources and behaviors of microplastics at UNESCO Can Gio Mangrove Biosphere Reserve. Density flotation with sodium chloride is employed to extract microplastics from sand at Can Gio Beach, and a double-filtration procedure is developed to recover microplastics from seawater at the beach and Dong Tranh Cape. The microplastics' morphology and type are analyzed by micro-Raman spectroscopy. The results show that microplastics are accumulated at concentrations from 31.99 to 92.56 MPs g-1 at various sand layers. The seawater at Can Gio Beach and Dong Tranh Cape contains 6.44 and 3.75 MPs L-1 of microplastics, respectively. White polyethylene fragments predominate, and all the microplastics comprise small secondary microplastics with a minimum size of 25 µm and a maximum size of 260 µm for fragments and a length of 640 µm for fibers. The proportions of polyethylene, polypropylene, polystyrene, and polymethylmethacrylate are similar. The differing percentages of other compositions in sand and seawater are attributed to the morphology and density of the microplastics. The results indicate the extent of microplastic pollution and suggest appropriate strategies for tourism development at the Biosphere Reserve.

9.
Sci Adv ; 7(34)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34407948

RESUMO

Early detection of malign patterns in patients' biological signals can save millions of lives. Despite the steady improvement of artificial intelligence-based techniques, the practical clinical application of these methods is mostly constrained to an offline evaluation of the patients' data. Previous studies have identified organic electrochemical devices as ideal candidates for biosignal monitoring. However, their use for pattern recognition in real time was never demonstrated. Here, we produce and characterize brain-inspired networks composed of organic electrochemical transistors and use them for time-series predictions and classification tasks using the reservoir computing approach. To show their potential use for biofluid monitoring and biosignal analysis, we classify four classes of arrhythmic heartbeats with an accuracy of 88%. The results of this study introduce a previously unexplored paradigm for biocompatible computational platforms and may enable development of ultralow-power consumption hardware-based artificial neural networks capable of interacting with body fluids and biological tissues.

10.
Adv Sci (Weinh) ; 8(17): e2101663, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34240575

RESUMO

The success of metal halide perovskites in photovoltaic and light-emitting diodes (LEDs) motivates their application as a solid-state thin-film laser. Various perovskites have shown optically pumped stimulated emission of lasing and amplified spontaneous emission (ASE), yet the ultimate goal of electrically pumped stimulated emission has not been achieved. As an essential step toward this goal, here, a perovskite diode structure that simultaneously exhibits stable operation at high current density (≈1 kA cm-2 ) and optically excited ASE (with a threshold of 180 µJ cm-2 ) is reported. This diode structure achieves an electroluminescence quantum efficiency of 0.8% at 850 A cm-2 , which is estimated to be ≈3% of the charge carrier population required to reach ASE in the same device. It is shown that the formation of a large angle waveguide mode and the reduction of parasitic absorption losses are two major design principles for diodes to obtain a positive gain for stimulated emission. In addition to its prospect as a perovskite laser, a new application of electrically pumped ASE is proposed as an ideal perovskite LED architecture allowing 100% external radiation efficiency.

11.
Nat Commun ; 12(1): 4259, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267210

RESUMO

Detection of electromagnetic signals for applications such as health, product quality monitoring or astronomy requires highly responsive and wavelength selective devices. Photomultiplication-type organic photodetectors have been shown to achieve high quantum efficiencies mainly in the visible range. Much less research has been focused on realizing near-infrared narrowband devices. Here, we demonstrate fully vacuum-processed narrow- and broadband photomultiplication-type organic photodetectors. Devices are based on enhanced hole injection leading to a maximum external quantum efficiency of almost 2000% at -10 V for the broadband device. The photomultiplicative effect is also observed in the charge-transfer state absorption region. By making use of an optical cavity device architecture, we enhance the charge-transfer response and demonstrate a wavelength tunable narrowband photomultiplication-type organic photodetector with external quantum efficiencies superior to those of pin-devices. The presented concept can further improve the performance of photodetectors based on the absorption of charge-transfer states, which were so far limited by the low external quantum efficiency provided by these devices.

12.
Plant Cell ; 33(8): 2583-2601, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34048579

RESUMO

Genetic incompatibility between the cytoplasm and the nucleus is thought to be a major factor in species formation, but mechanistic understanding of this process is poor. In evening primroses (Oenothera spp.), a model plant for organelle genetics and population biology, hybrid offspring regularly display chloroplast-nuclear incompatibility. This usually manifests in bleached plants, more rarely in hybrid sterility or embryonic lethality. Hence, most of these incompatibilities affect photosynthetic capability, a trait that is under selection in changing environments. Here we show that light-dependent misregulation of the plastid psbB operon, which encodes core subunits of photosystem II and the cytochrome b6f complex, can lead to hybrid incompatibility, and this ultimately drives speciation. This misregulation causes an impaired light acclimation response in incompatible plants. Moreover, as a result of their different chloroplast genotypes, the parental lines differ in photosynthesis performance upon exposure to different light conditions. Significantly, the incompatible chloroplast genome is naturally found in xeric habitats with high light intensities, whereas the compatible one is limited to mesic habitats. Consequently, our data raise the possibility that the hybridization barrier evolved as a result of adaptation to specific climatic conditions.


Assuntos
Especiação Genética , Genoma de Cloroplastos , Oenothera biennis/genética , Óperon , Fotossíntese/genética , Aclimatação/genética , Complexo Citocromos b6f/genética , Luz , Oenothera biennis/fisiologia , Complexo de Proteína do Fotossistema II/genética , Proteínas de Plantas/genética , Plastídeos/genética , Regiões Promotoras Genéticas , Edição de RNA
13.
J Occup Med Toxicol ; 16(1): 13, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863346

RESUMO

BACKGROUND: Analysis on gender related differences in occupational stress and burnout levels usually reveal higher occupational stress and burnout levels for women compared to men, especially in male-dominated working environments. In opposition to group differentiation, more specific gender-related dimensions feminity and masculinity were used in the study to describe individual and work environment characteristics and analyze their effects. METHODS: In a cross-sectional design, survey results were linked to steroid levels in hair samples. Data was collected in a German medical services company with 146 employed women age 22-66 years (M = 40.48, SD = 10.38), 58 of them provided hair samples for steroid detection. Feminity and masculinity were measured by Gender Role Orientation Scale GTS+. Two Person-Environment fit scores in feminity and masculinity were calculated by subtracting individual from environment values. Both fit scores were proved as predictors in hierarchical linear regression models predicting burnout and work engagement as well as hair steroids cortisol, cortisone, DHEA, testosterone and progesterone detected by Liquid Chromatography-Mass Spectrometry (LC-MS/MS) as stress biomarkers. Bivariate correlations as well as moderator and mediator analysis were implemented. RESULTS: After considering age, role clarity, and work organization, Person-Environment fit in feminity still added significant variance explanation (ß = .23, ∆ R2 = .05, p = .003) for burnout. Person-Environment fit in feminity also explained poor variance in work engagement (ß = -.29, R2 = .09, p < .001). Person-Environment fit in masculinity added considerable variance explanation (ß = .34, ∆ R2 = .12, p = 0.018) to cortisol levels after including quantitative demands to the model. CONCLUSIONS: Person-Environment fit in feminity might be inspected as a predictor for burnout and work engagement. Person-Environment fit in masculinity can be taken into consideration as a predictor for hair cortisol as stress biomarker. Feminity and masculinity can be used as personality traits as well as characteristics of work environment, thus providing a particular gender-role related method of differentiation within gender groups. Also, specific methods could be derived for stress and burnout prevention and promotion of work engagement. Representative population studies with bigger samples and longitudinal surveys are needed to better explore the benefits and limitations of this approach.

14.
Front Plant Sci ; 12: 624365, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33613605

RESUMO

Recently, we published a set of tobacco lines expressing the Daucus carota (carrot) DcLCYB1 gene with accelerated development, increased carotenoid content, photosynthetic efficiency, and yield. Because of this development, DcLCYB1 expression might be of general interest in crop species as a strategy to accelerate development and increase biomass production under field conditions. However, to follow this path, a better understanding of the molecular basis of this phenotype is essential. Here, we combine OMICs (RNAseq, proteomics, and metabolomics) approaches to advance our understanding of the broader effect of LCYB expression on the tobacco transcriptome and metabolism. Upon DcLCYB1 expression, the tobacco transcriptome (~2,000 genes), proteome (~700 proteins), and metabolome (26 metabolites) showed a high number of changes in the genes involved in metabolic processes related to cell wall, lipids, glycolysis, and secondary metabolism. Gene and protein networks revealed clusters of interacting genes and proteins mainly involved in ribosome and RNA metabolism and translation. In addition, abiotic stress-related genes and proteins were mainly upregulated in the transgenic lines. This was well in line with an enhanced stress (high light, salt, and H2O2) tolerance response in all the transgenic lines compared with the wild type. Altogether, our results show an extended and coordinated response beyond the chloroplast (nucleus and cytosol) at the transcriptome, proteome, and metabolome levels, supporting enhanced plant growth under normal and stress conditions. This final evidence completes the set of benefits conferred by the expression of the DcLCYB1 gene, making it a very promising bioengineering tool to generate super crops.

15.
Nat Commun ; 12(1): 551, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483507

RESUMO

Organic photodetectors have promising applications in low-cost imaging, health monitoring and near-infrared sensing. Recent research on organic photodetectors based on donor-acceptor systems has resulted in narrow-band, flexible and biocompatible devices, of which the best reach external photovoltaic quantum efficiencies approaching 100%. However, the high noise spectral density of these devices limits their specific detectivity to around 1013 Jones in the visible and several orders of magnitude lower in the near-infrared, severely reducing performance. Here, we show that the shot noise, proportional to the dark current, dominates the noise spectral density, demanding a comprehensive understanding of the dark current. We demonstrate that, in addition to the intrinsic saturation current generated via charge-transfer states, dark current contains a major contribution from trap-assisted generated charges and decreases systematically with decreasing concentration of traps. By modeling the dark current of several donor-acceptor systems, we reveal the interplay between traps and charge-transfer states as source of dark current and show that traps dominate the generation processes, thus being the main limiting factor of organic photodetectors detectivity.

16.
J Chem Theory Comput ; 17(1): 560-570, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33373213

RESUMO

De novo construction of loop regions is an important problem in computational structural biology. Compared to regions with well-defined secondary structure, loops tend to exhibit significant conformational heterogeneity. As a result, their structures are often ambiguous when determined using experimental data obtained by crystallography, cryo-EM, or NMR. Although structurally diverse models could provide a more relevant representation of proteins in their native states, obtaining large numbers of biophysically realistic and physiologically relevant loop conformations is a resource-consuming task. To address this need, we developed a novel loop construction algorithm, Hash/RCD, that combines knowledge-based conformational hashing with random coordinate descent (RCD). This hybrid approach achieved a closure rate of 100% on a benchmark set of 195 loops in 29 proteins that range from 3 to 31 residues. More importantly, the use of templates allows Hash/RCD to maintain the accuracy of state-of-the-art coordinate descent methods while reducing sampling time from over 400 to 141 ms. These results highlight how the integration of coordinate descent with knowledge-based sampling overcomes barriers inherent to either approach in isolation. This method may facilitate the identification of native-like loop conformations using experimental data or full-atom scoring functions by allowing rapid sampling of large numbers of loops. In this manuscript, we investigate and discuss the advantages, bottlenecks, and limitations of combining conformational hashing with RCD. By providing a detailed technical description of the Hash/RCD algorithm, we hope to facilitate its implementation by other researchers.


Assuntos
Proteínas/química , Algoritmos , Simulação por Computador , Bases de Dados de Proteínas , Modelos Moleculares , Conformação Proteica , Termodinâmica
17.
Int J Mol Sci ; 21(21)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142722

RESUMO

The wide natural variation present in rice is an important source of genes to facilitate stress tolerance breeding. However, identification of candidate genes from RNA-Seq studies is hampered by the lack of high-quality genome assemblies for the most stress tolerant cultivars. A more targeted solution is the reconstruction of transcriptomes to provide templates to map RNA-seq reads. Here, we sequenced transcriptomes of ten rice cultivars of three subspecies on the PacBio Sequel platform. RNA was isolated from different organs of plants grown under control and abiotic stress conditions in different environments. Reconstructed de novo reference transcriptomes resulted in 37,500 to 54,600 plant-specific high-quality isoforms per cultivar. Isoforms were collapsed to reduce sequence redundancy and evaluated, e.g., for protein completeness (BUSCO). About 40% of all identified transcripts were novel isoforms compared to the Nipponbare reference transcriptome. For the drought/heat tolerant aus cultivar N22, 56 differentially expressed genes in developing seeds were identified at combined heat and drought in the field. The newly generated rice transcriptomes are useful to identify candidate genes for stress tolerance breeding not present in the reference transcriptomes/genomes. In addition, our approach provides a cost-effective alternative to genome sequencing for identification of candidate genes in highly stress tolerant genotypes.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/genética , RNA-Seq/métodos , Estresse Fisiológico , Transcriptoma , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo
18.
Sci Rep ; 10(1): 15424, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32963289

RESUMO

Maternal exercise (ME) during pregnancy has been shown to improve metabolic health in offspring and confers protection against the development of non-alcoholic fatty liver disease (NAFLD). However, its underlying mechanism are still poorly understood, and it remains unclear whether protective effects on hepatic metabolism are already seen in the offspring early life. This study aimed at determining the effects of ME during pregnancy on offspring body composition and development of NAFLD while focusing on proteomic-based analysis of the hepatic energy metabolism during developmental organ programming in early life. Under an obesogenic high-fat diet (HFD), male offspring of exercised C57BL/6J-mouse dams were protected from body weight gain and NAFLD in adulthood (postnatal day (P) 112). This was associated with a significant activation of hepatic AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor alpha (PPARα) and PPAR coactivator-1 alpha (PGC1α) signaling with reduced hepatic lipogenesis and increased hepatic ß-oxidation at organ programming peak in early life (P21). Concomitant proteomic analysis revealed a characteristic hepatic expression pattern in offspring as a result of ME with the most prominent impact on Cholesterol 7 alpha-hydroxylase (CYP7A1). Thus, ME may offer protection against offspring HFD-induced NAFLD by shaping hepatic proteomics signature and metabolism in early life. The results highlight the potential of exercise during pregnancy for preventing the early origins of NAFLD.


Assuntos
Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Condicionamento Físico Animal/fisiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Peso Corporal/fisiologia , Dieta Hiperlipídica/efeitos adversos , Feminino , Fígado/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Obesidade/metabolismo , Obesidade/fisiopatologia , PPAR alfa/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Transdução de Sinais/fisiologia , Aumento de Peso/fisiologia
19.
Front Plant Sci ; 11: 1118, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793268

RESUMO

Staple crops in human and livestock diets suffer from deficiencies in certain "essential" amino acids including methionine. With the goal of increasing methionine in rice seed, we generated a pair of "Push × Pull" double transgenic lines, each containing a methionine-dense seed storage protein (2S albumin from sunflower, HaSSA) and an exogenous enzyme for either methionine (feedback desensitized cystathionine gamma synthase from Arabidopsis, AtD-CGS) or cysteine (serine acetyltransferase from E. coli, EcSAT) biosynthesis. In both double transgenic lines, the total seed methionine content was approximately 50% higher than in their untransformed parental line, Oryza sativa ssp. japonica cv. Taipei 309. HaSSA-containing rice seeds were reported to display an altered seed protein profile, speculatively due to insufficient sulfur amino acid content. However, here we present data suggesting that this may result from an overloaded protein folding machinery in the endoplasmic reticulum rather than primarily from redistribution of limited methionine from endogenous seed proteins to HaSSA. We hypothesize that HaSSA-associated endoplasmic reticulum stress results in redox perturbations that negatively impact sulfate reduction to cysteine, and we speculate that this is mitigated by EcSAT-associated increased sulfur import into the seed, which facilitates additional synthesis of cysteine and glutathione. The data presented here reveal challenges associated with increasing the methionine content in rice seed, including what may be relatively low protein folding capacity in the endoplasmic reticulum and an insufficient pool of sulfate available for additional cysteine and methionine synthesis. We propose that future approaches to further improve the methionine content in rice should focus on increasing seed sulfur loading and avoiding the accumulation of unfolded proteins in the endoplasmic reticulum. Oryza sativa ssp. japonica: urn:lsid:ipni.org:names:60471378-2.

20.
Proc Natl Acad Sci U S A ; 117(36): 22452-22461, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32820073

RESUMO

Carbon fixation via the Calvin cycle is constrained by the side activity of Rubisco with dioxygen, generating 2-phosphoglycolate. The metabolic recycling of phosphoglycolate was extensively studied in photoautotrophic organisms, including plants, algae, and cyanobacteria, where it is referred to as photorespiration. While receiving little attention so far, aerobic chemolithoautotrophic bacteria that operate the Calvin cycle independent of light must also recycle phosphoglycolate. As the term photorespiration is inappropriate for describing phosphoglycolate recycling in these nonphotosynthetic autotrophs, we suggest the more general term "phosphoglycolate salvage." Here, we study phosphoglycolate salvage in the model chemolithoautotroph Cupriavidus necator H16 (Ralstonia eutropha H16) by characterizing the proxy process of glycolate metabolism, performing comparative transcriptomics of autotrophic growth under low and high CO2 concentrations, and testing autotrophic growth phenotypes of gene deletion strains at ambient CO2 We find that the canonical plant-like C2 cycle does not operate in this bacterium, and instead, the bacterial-like glycerate pathway is the main route for phosphoglycolate salvage. Upon disruption of the glycerate pathway, we find that an oxidative pathway, which we term the malate cycle, supports phosphoglycolate salvage. In this cycle, glyoxylate is condensed with acetyl coenzyme A (acetyl-CoA) to give malate, which undergoes two oxidative decarboxylation steps to regenerate acetyl-CoA. When both pathways are disrupted, autotrophic growth is abolished at ambient CO2 We present bioinformatic data suggesting that the malate cycle may support phosphoglycolate salvage in diverse chemolithoautotrophic bacteria. This study thus demonstrates a so far unknown phosphoglycolate salvage pathway, highlighting important diversity in microbial carbon fixation metabolism.


Assuntos
Crescimento Quimioautotrófico/fisiologia , Glicolatos/metabolismo , Fotossíntese/fisiologia , Acetilcoenzima A/metabolismo , Proteínas de Bactérias/metabolismo , Ciclo do Carbono/fisiologia , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Malato Sintase/metabolismo , Malatos/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...