Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 17(1): 560-570, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33373213

RESUMO

De novo construction of loop regions is an important problem in computational structural biology. Compared to regions with well-defined secondary structure, loops tend to exhibit significant conformational heterogeneity. As a result, their structures are often ambiguous when determined using experimental data obtained by crystallography, cryo-EM, or NMR. Although structurally diverse models could provide a more relevant representation of proteins in their native states, obtaining large numbers of biophysically realistic and physiologically relevant loop conformations is a resource-consuming task. To address this need, we developed a novel loop construction algorithm, Hash/RCD, that combines knowledge-based conformational hashing with random coordinate descent (RCD). This hybrid approach achieved a closure rate of 100% on a benchmark set of 195 loops in 29 proteins that range from 3 to 31 residues. More importantly, the use of templates allows Hash/RCD to maintain the accuracy of state-of-the-art coordinate descent methods while reducing sampling time from over 400 to 141 ms. These results highlight how the integration of coordinate descent with knowledge-based sampling overcomes barriers inherent to either approach in isolation. This method may facilitate the identification of native-like loop conformations using experimental data or full-atom scoring functions by allowing rapid sampling of large numbers of loops. In this manuscript, we investigate and discuss the advantages, bottlenecks, and limitations of combining conformational hashing with RCD. By providing a detailed technical description of the Hash/RCD algorithm, we hope to facilitate its implementation by other researchers.


Assuntos
Proteínas/química , Algoritmos , Simulação por Computador , Bases de Dados de Proteínas , Modelos Moleculares , Conformação Proteica , Termodinâmica
2.
Structure ; 26(4): 657-666.e2, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29526436

RESUMO

While great progress has been made, only 10% of the nearly 1,000 integral, α-helical, multi-span membrane protein families are represented by at least one experimentally determined structure in the PDB. Previously, we developed the algorithm BCL::MP-Fold, which samples the large conformational space of membrane proteins de novo by assembling predicted secondary structure elements guided by knowledge-based potentials. Here, we present a case study of rhodopsin fold determination by integrating sparse and/or low-resolution restraints from multiple experimental techniques including electron microscopy, electron paramagnetic resonance spectroscopy, and nuclear magnetic resonance spectroscopy. Simultaneous incorporation of orthogonal experimental restraints not only significantly improved the sampling accuracy but also allowed identification of the correct fold, which is demonstrated by a protein size-normalized transmembrane root-mean-square deviation as low as 1.2 Å. The protocol developed in this case study can be used for the determination of unknown membrane protein folds when limited experimental restraints are available.


Assuntos
Algoritmos , Proteínas de Membrana/química , Dobramento de Proteína , Rodopsina/química , Sítios de Ligação , Espectroscopia de Ressonância de Spin Eletrônica/estatística & dados numéricos , Humanos , Microscopia Eletrônica/estatística & dados numéricos , Modelos Moleculares , Método de Monte Carlo , Ressonância Magnética Nuclear Biomolecular/instrumentação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Termodinâmica
3.
ACS Omega ; 2(6): 2977-2984, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28691114

RESUMO

ExoU is a 74 kDa cytotoxin that undergoes substantial conformational changes as part of its function, that is, it has multiple thermodynamically stable conformations that interchange depending on its environment. Such flexible proteins pose unique challenges to structural biology: (1) not only is it often difficult to determine structures by X-ray crystallography for all biologically relevant conformations because of the flat energy landscape (2) but also experimental conditions can easily perturb the biologically relevant conformation. The first challenge can be overcome by applying orthogonal structural biology techniques that are capable of observing alternative, biologically relevant conformations. The second challenge can be addressed by determining the structure in the same biological state with two independent techniques under different experimental conditions. If both techniques converge to the same structural model, the confidence that an unperturbed biologically relevant conformation is observed increases. To this end, we determine the structure of the C-terminal domain of the effector protein, ExoU, from data obtained by electron paramagnetic resonance spectroscopy in conjunction with site-directed spin labeling and in silico de novo structure determination. Our protocol encompasses a multimodule approach, consisting of low-resolution topology sampling, clustering, and high-resolution refinement. The resulting model was compared with an ExoU model in complex with its chaperone SpcU obtained previously by X-ray crystallography. The two models converged to a minimal RMSD100 of 3.2 Å, providing evidence that the unbound structure of ExoU matches the fold observed in complex with SpcU.

4.
Proteins ; 85(7): 1212-1221, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28263405

RESUMO

One of the challenging problems in tertiary structure prediction of helical membrane proteins (HMPs) is the determination of rotation of α-helices around the helix normal. Incorrect prediction of helix rotations substantially disrupts native residue-residue contacts while inducing only a relatively small effect on the overall fold. We previously developed a method for predicting residue contact numbers (CNs), which measure the local packing density of residues within the protein tertiary structure. In this study, we tested the idea of incorporating predicted CNs as restraints to guide the sampling of helix rotation. For a benchmark set of 15 HMPs with simple to rather complicated folds, the average contact recovery (CR) of best-sampled models was improved for all targets, the likelihood of sampling models with CR greater than 20% was increased for 13 targets, and the average RMSD100 of best-sampled models was improved for 12 targets. This study demonstrated that explicit incorporation of CNs as restraints improves the prediction of helix-helix packing. Proteins 2017; 85:1212-1221. © 2017 Wiley Periodicals, Inc.


Assuntos
Algoritmos , Aminoácidos/química , Proteínas de Membrana/química , Benchmarking , Sítios de Ligação , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína
5.
J Struct Biol ; 195(1): 19-30, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27181418

RESUMO

Despite impressive successes in protein design, designing a well-folded protein of more 100 amino acids de novo remains a formidable challenge. Exploiting the promising biophysical features of the artificial protein Octarellin V, we improved this protein by directed evolution, thus creating a more stable and soluble protein: Octarellin V.1. Next, we obtained crystals of Octarellin V.1 in complex with crystallization chaperons and determined the tertiary structure. The experimental structure of Octarellin V.1 differs from its in silico design: the (αßα) sandwich architecture bears some resemblance to a Rossman-like fold instead of the intended TIM-barrel fold. This surprising result gave us a unique and attractive opportunity to test the state of the art in protein structure prediction, using this artificial protein free of any natural selection. We tested 13 automated webservers for protein structure prediction and found none of them to predict the actual structure. More than 50% of them predicted a TIM-barrel fold, i.e. the structure we set out to design more than 10years ago. In addition, local software runs that are human operated can sample a structure similar to the experimental one but fail in selecting it, suggesting that the scoring and ranking functions should be improved. We propose that artificial proteins could be used as tools to test the accuracy of protein structure prediction algorithms, because their lack of evolutionary pressure and unique sequences features.


Assuntos
Simulação por Computador/normas , Evolução Molecular Direcionada/métodos , Proteínas/química , Proteínas Recombinantes/química , Cristalografia por Raios X , Humanos , Dobramento de Proteína , Estrutura Terciária de Proteína
6.
J Struct Biol ; 195(1): 62-71, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27129417

RESUMO

Structure determination remains a challenge for many biologically important proteins. In particular, proteins that adopt multiple conformations often evade crystallization in all biologically relevant states. Although computational de novo protein folding approaches often sample biologically relevant conformations, the selection of the most accurate model for different functional states remains a formidable challenge, in particular, for proteins with more than about 150 residues. Electron paramagnetic resonance (EPR) spectroscopy can obtain limited structural information for proteins in well-defined biological states and thereby assist in selecting biologically relevant conformations. The present study demonstrates that de novo folding methods are able to accurately sample the folds of 192-residue long soluble monomeric Bcl-2-associated X protein (BAX). The tertiary structures of the monomeric and homodimeric forms of BAX were predicted using the primary structure as well as 25 and 11 EPR distance restraints, respectively. The predicted models were subsequently compared to respective NMR/X-ray structures of BAX. EPR restraints improve the protein-size normalized root-mean-square-deviation (RMSD100) of the most accurate models with respect to the NMR/crystal structure from 5.9Å to 3.9Å and from 5.7Å to 3.3Å, respectively. Additionally, the model discrimination is improved, which is demonstrated by an improvement of the enrichment from 5% to 15% and from 13% to 21%, respectively.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Modelos Moleculares , Dobramento de Proteína , Proteína X Associada a bcl-2/química , Algoritmos , Sequência de Aminoácidos , Animais , Humanos , Estrutura Molecular , Conformação Proteica , Multimerização Proteica
7.
PLoS One ; 11(4): e0152517, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27046050

RESUMO

In silico prediction of a protein's tertiary structure remains an unsolved problem. The community-wide Critical Assessment of Protein Structure Prediction (CASP) experiment provides a double-blind study to evaluate improvements in protein structure prediction algorithms. We developed a protein structure prediction pipeline employing a three-stage approach, consisting of low-resolution topology search, high-resolution refinement, and molecular dynamics simulation to predict the tertiary structure of proteins from the primary structure alone or including distance restraints either from predicted residue-residue contacts, nuclear magnetic resonance (NMR) nuclear overhauser effect (NOE) experiments, or mass spectroscopy (MS) cross-linking (XL) data. The protein structure prediction pipeline was evaluated in the CASP11 experiment on twenty regular protein targets as well as thirty-three 'assisted' protein targets, which also had distance restraints available. Although the low-resolution topology search module was able to sample models with a global distance test total score (GDT_TS) value greater than 30% for twelve out of twenty proteins, frequently it was not possible to select the most accurate models for refinement, resulting in a general decay of model quality over the course of the prediction pipeline. In this study, we provide a detailed overall analysis, study one target protein in more detail as it travels through the protein structure prediction pipeline, and evaluate the impact of limited experimental data.


Assuntos
Estrutura Terciária de Proteína , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Simulação de Dinâmica Molecular , Dobramento de Proteína
8.
Proc Natl Acad Sci U S A ; 113(5): 1220-5, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26787875

RESUMO

The small multidrug transporter from Escherichia coli, EmrE, couples the energetically uphill extrusion of hydrophobic cations out of the cell to the transport of two protons down their electrochemical gradient. Although principal mechanistic elements of proton/substrate antiport have been described, the structural record is limited to the conformation of the substrate-bound state, which has been shown to undergo isoenergetic alternating access. A central but missing link in the structure/mechanism relationship is a description of the proton-bound state, which is an obligatory intermediate in the transport cycle. Here we report a systematic spin labeling and double electron electron resonance (DEER) study that uncovers the conformational changes of EmrE subsequent to protonation of critical acidic residues in the context of a global description of ligand-induced structural rearrangements. We find that protonation of E14 leads to extensive rotation and tilt of transmembrane helices 1-3 in conjunction with repacking of loops, conformational changes that alter the coordination of the bound substrate and modulate its access to the binding site from the lipid bilayer. The transport model that emerges from our data posits a proton-bound, but occluded, resting state. Substrate binding from the inner leaflet of the bilayer releases the protons and triggers alternating access between inward- and outward-facing conformations of the substrate-loaded transporter, thus enabling antiport without dissipation of the proton gradient.


Assuntos
Antiporters/química , Proteínas de Escherichia coli/química , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Conformação Proteica , Prótons , Difração de Raios X
9.
J Chem Inf Model ; 56(2): 423-34, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26804342

RESUMO

Prediction of the three-dimensional (3D) structures of proteins by computational methods is acknowledged as an unsolved problem. Accurate prediction of important structural characteristics such as contact number is expected to accelerate the otherwise slow progress being made in the prediction of 3D structure of proteins. Here, we present a dropout neural network-based method, TMH-Expo, for predicting the contact number of transmembrane helix (TMH) residues from sequence. Neuronal dropout is a strategy where certain neurons of the network are excluded from back-propagation to prevent co-adaptation of hidden-layer neurons. By using neuronal dropout, overfitting was significantly reduced and performance was noticeably improved. For multi-spanning helical membrane proteins, TMH-Expo achieved a remarkable Pearson correlation coefficient of 0.69 between predicted and experimental values and a mean absolute error of only 1.68. In addition, among those membrane protein-membrane protein interface residues, 76.8% were correctly predicted. Mapping of predicted contact numbers onto structures indicates that contact numbers predicted by TMH-Expo reflect the exposure patterns of TMHs and reveal membrane protein-membrane protein interfaces, reinforcing the potential of predicted contact numbers to be used as restraints for 3D structure prediction and protein-protein docking. TMH-Expo can be accessed via a Web server at www.meilerlab.org .


Assuntos
Proteínas de Membrana/química , Conformação Proteica , Solventes/química
10.
Methods ; 89: 79-90, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25986934

RESUMO

Recent development of high-resolution mass spectrometry (MS) instruments enables chemical crosslinking (XL) to become a high-throughput method for obtaining structural information about proteins. Restraints derived from XL-MS experiments have been used successfully for structure refinement and protein-protein docking. However, one formidable question is under which circumstances XL-MS data might be sufficient to determine a protein's tertiary structure de novo? Answering this question will not only include understanding the impact of XL-MS data on sampling and scoring within a de novo protein structure prediction algorithm, it must also determine an optimal crosslinker type and length for protein structure determination. While a longer crosslinker will yield more restraints, the value of each restraint for protein structure prediction decreases as the restraint is consistent with a larger conformational space. In this study, the number of crosslinks and their discriminative power was systematically analyzed in silico on a set of 2055 non-redundant protein folds considering Lys-Lys, Lys-Asp, Lys-Glu, Cys-Cys, and Arg-Arg reactive crosslinkers between 1 and 60Å. Depending on the protein size a heuristic was developed that determines the optimal crosslinker length. Next, simulated restraints of variable length were used to de novo predict the tertiary structure of fifteen proteins using the BCL::Fold algorithm. The results demonstrate that a distinct crosslinker length exists for which information content for de novo protein structure prediction is maximized. The sampling accuracy improves on average by 1.0 Å and up to 2.2 Å in the most prominent example. XL-MS restraints enable consistently an improved selection of native-like models with an average enrichment of 2.1.


Assuntos
Reagentes de Ligações Cruzadas/química , Conformação Proteica , Dobramento de Proteína , Espectrometria de Massas em Tandem/métodos , Animais , Cromatografia Líquida/métodos , Previsões , Cavalos , Proteínas/análise , Proteínas/química
11.
Proteins ; 83(11): 1947-62, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25820805

RESUMO

For many membrane proteins, the determination of their topology remains a challenge for methods like X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. Electron paramagnetic resonance (EPR) spectroscopy has evolved as an alternative technique to study structure and dynamics of membrane proteins. The present study demonstrates the feasibility of membrane protein topology determination using limited EPR distance and accessibility measurements. The BCL::MP-Fold (BioChemical Library membrane protein fold) algorithm assembles secondary structure elements (SSEs) in the membrane using a Monte Carlo Metropolis (MCM) approach. Sampled models are evaluated using knowledge-based potential functions and agreement with the EPR data and a knowledge-based energy function. Twenty-nine membrane proteins of up to 696 residues are used to test the algorithm. The RMSD100 value of the most accurate model is better than 8 Å for 27, better than 6 Å for 22, and better than 4 Å for 15 of the 29 proteins, demonstrating the algorithms' ability to sample the native topology. The average enrichment could be improved from 1.3 to 2.5, showing the improved discrimination power by using EPR data.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Dobramento de Proteína , Espectroscopia de Ressonância de Spin Eletrônica , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Proteica
12.
Proteins ; 83(3): 547-63, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25581562

RESUMO

During CASP10 in summer 2012, we tested BCL::Fold for prediction of free modeling (FM) and template-based modeling (TBM) targets. BCL::Fold assembles the tertiary structure of a protein from predicted secondary structure elements (SSEs) omitting more flexible loop regions early on. This approach enables the sampling of conformational space for larger proteins with more complex topologies. In preparation of CASP11, we analyzed the quality of CASP10 models throughout the prediction pipeline to understand BCL::Fold's ability to sample the native topology, identify native-like models by scoring and/or clustering approaches, and our ability to add loop regions and side chains to initial SSE-only models. The standout observation is that BCL::Fold sampled topologies with a GDT_TS score > 33% for 12 of 18 and with a topology score > 0.8 for 11 of 18 test cases de novo. Despite the sampling success of BCL::Fold, significant challenges still exist in clustering and loop generation stages of the pipeline. The clustering approach employed for model selection often failed to identify the most native-like assembly of SSEs for further refinement and submission. It was also observed that for some ß-strand proteins model refinement failed as ß-strands were not properly aligned to form hydrogen bonds removing otherwise accurate models from the pool. Further, BCL::Fold samples frequently non-natural topologies that require loop regions to pass through the center of the protein.


Assuntos
Biologia Computacional/métodos , Dobramento de Proteína , Proteínas/química , Proteínas/metabolismo , Análise de Sequência de Proteína/métodos , Algoritmos , Simulação por Computador , Modelos Moleculares , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...