Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(8): 4849-4858, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35363471

RESUMO

California's dairy sector accounts for ∼50% of anthropogenic CH4 emissions in the state's greenhouse gas (GHG) emission inventory. Although California dairy facilities' location and herd size vary over time, atmospheric inverse modeling studies rely on decade-old facility-scale geospatial information. For the first time, we apply artificial intelligence (AI) to aerial imagery to estimate dairy CH4 emissions from California's San Joaquin Valley (SJV), a region with ∼90% of the state's dairy population. Using an AI method, we process 316,882 images to estimate the facility-scale herd size across the SJV. The AI approach predicts herd size that strongly (>95%) correlates with that made by human visual inspection, providing a low-cost alternative to the labor-intensive inventory development process. We estimate SJV's dairy enteric and manure CH4 emissions for 2018 to be 496-763 Gg/yr (mean = 624; 95% confidence) using the predicted herd size. We also apply our AI approach to estimate CH4 emission reduction from anaerobic digester deployment. We identify 162 large (90th percentile) farms and estimate a CH4 reduction potential of 83 Gg CH4/yr for these large facilities from anaerobic digester adoption. The results indicate that our AI approach can be applied to characterize the manure system (e.g., use of an anaerobic lagoon) and estimate GHG emissions for other sectors.


Assuntos
Poluentes Atmosféricos , Gases de Efeito Estufa , Poluentes Atmosféricos/análise , Inteligência Artificial , Fazendas , Humanos , Esterco , Metano/análise
2.
Natl Sci Rev ; 8(3): nwaa157, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34691590

RESUMO

A new mechanism of new particle formation (NPF) is investigated using comprehensive measurements of aerosol physicochemical quantities and meteorological variables made in three continents, including Beijing, China; the Southern Great Plains site in the USA; and SMEAR II Station in Hyytiälä, Finland. Despite the considerably different emissions of chemical species among the sites, a common relationship was found between the characteristics of NPF and the stability intensity. The stability parameter (ζ = Z/L, where Z is the height above ground and L is the Monin-Obukhov length) is found to play an important role; it drops significantly before NPF as the atmosphere becomes more unstable, which may serve as an indicator of nucleation bursts. As the atmosphere becomes unstable, the NPF duration is closely related to the tendency for turbulence development, which influences the evolution of the condensation sink. Presumably, the unstable atmosphere may dilute pre-existing particles, effectively reducing the condensation sink, especially at coarse mode to foster nucleation. This new mechanism is confirmed by model simulations using a molecular dynamic model that mimics the impact of turbulence development on nucleation by inducing and intensifying homogeneous nucleation events.

3.
Environ Sci Technol ; 54(22): 14617-14626, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33125216

RESUMO

California hosts ∼124,000 abandoned and plugged (AP) oil and gas wells, ∼38,000 idle wells, and ∼63,000 active wells, whose methane (CH4) emissions remain largely unquantified at levels below ∼2 kg CH4 h-1. We sampled 121 wells using two methods: a rapid mobile plume integration method (detection ∼0.5 g CH4 h-1) and a more sensitive static flux chamber (detection ∼1 × 10-6 g CH4 h-1). We measured small but detectable methane emissions from 34 of 97 AP wells (mean emission: 0.286 g CH4 h-1). In contrast, we found emissions from 11 of 17 idle wells-which are not currently producing (mean: 35.4 g CH4 h-1)-4 of 6 active wells (mean: 189.7 g CH4 h-1), and one unplugged well-an open casing with no infrastructure present (10.9 g CH4 h-1). Our results support previous findings that emissions from plugged wells are low but are more substantial from idle wells. In addition, our smaller sample of active wells suggests that their reported emissions are consistent with previous studies and deserve further attention. Due to limited access, we could not measure wells in most major active oil and gas fields in California; therefore, we recommend additional data collection from all types of wells but especially active and idle wells.


Assuntos
Poluentes Atmosféricos , Campos de Petróleo e Gás , Poluentes Atmosféricos/análise , California , Metano/análise , Poços de Água
4.
Environ Sci Technol ; 54(15): 9254-9264, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32633497

RESUMO

This study derives methane emission rates from 92 airborne observations collected over 23 facilities including 5 refineries, 10 landfills, 4 wastewater treatment plants (POTWs), 2 composting operations, and 2 dairies in the San Francisco Bay Area. Emission rates are measured using an airborne mass-balance technique from a low-flying aircraft. Annual measurement-based sectorwide methane emissions are 19,000 ± 2300 Mg for refineries, 136,700 ± 25,900 Mg for landfills, 11,900 ± 1,500 Mg for POTWs, and 11,100 ± 3,400 Mg for composting. The average of measured emissions for each refinery ranges from 4 to 23 times larger than the corresponding emissions reported to regulatory agencies, while measurement-derived landfill and POTW estimates are approximately twice the current inventory estimates. Significant methane emissions at composting facilities indicate that a California mandate to divert organics from landfills to composting may not be an effective measure for mitigating methane emissions unless best management practices are instituted at composting facilities. Complementary evidence from airborne remote sensing imagery indicates atmospheric venting from refinery hydrogen plants, landfill working surfaces, composting stockpiles, etc., to be among the specific source types responsible for the observed discrepancies. This work highlights the value of multiple measurement approaches to accurately estimate facility-scale methane emissions and perform source attribution at subfacility scales to guide and verify effective mitigation policy and action.


Assuntos
Poluentes Atmosféricos , Metano , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Metano/análise , São Francisco , Instalações de Eliminação de Resíduos
5.
Environ Sci Technol ; 53(16): 9636-9645, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31347357

RESUMO

California methane (CH4) emissions are quantified for three years from two tower networks and one aircraft campaign. We used backward trajectory simulations and a mesoscale Bayesian inverse model, initialized by three inventories, to achieve the emission quantification. Results show total statewide CH4 emissions of 2.05 ± 0.26 (at 95% confidence) Tg/yr, which is 1.14 to 1.47 times greater than the anthropogenic emission estimates by California Air Resource Board (CARB). Some of differences could be biogenic emissions, superemitter point sources, and other episodic emissions which may not be completely included in the CARB inventory. San Joaquin Valley (SJV) has the largest CH4 emissions (0.94 ± 0.18 Tg/yr), followed by the South Coast Air Basin, the Sacramento Valley, and the San Francisco Bay Area at 0.39 ± 0.18, 0.21 ± 0.04, and 0.16 ± 0.05 Tg/yr, respectively. The dairy and oil/gas production sources in the SJV contribute 0.44 ± 0.36 and 0.22 ± 0.23 Tg CH4/yr, respectively. This study has important policy implications for regulatory programs, as it provides a thorough multiyear evaluation of the emissions inventory using independent atmospheric measurements and investigates the utility of a complementary multiplatform approach in understanding the spatial and temporal patterns of CH4 emissions in the state and identifies opportunities for the expansion and applications of the monitoring network.


Assuntos
Poluentes Atmosféricos , Metano , Aeronaves , Teorema de Bayes , California , São Francisco
6.
Sci Adv ; 5(6): eaaw0076, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31183402

RESUMO

Long-term atmospheric CO2 mole fraction and δ13CO2 observations over North America document persistent responses to the El Niño-Southern Oscillation. We estimate these responses corresponded to 0.61 (0.45 to 0.79) PgC year-1 more North American carbon uptake during El Niño than during La Niña between 2007 and 2015, partially offsetting increases of net tropical biosphere-to-atmosphere carbon flux around El Niño. Anomalies in derived North American net ecosystem exchange (NEE) display strong but opposite correlations with surface air temperature between seasons, while their correlation with water availability was more constant throughout the year, such that water availability is the dominant control on annual NEE variability over North America. These results suggest that increased water availability and favorable temperature conditions (warmer spring and cooler summer) caused enhanced carbon uptake over North America near and during El Niño.

7.
Sci Total Environ ; 664: 381-391, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-30743131

RESUMO

Combustion of fossil fuel is the dominant source of greenhouse gas emissions to the atmosphere in California. Here, we describe radiocarbon (14CO2) measurements and atmospheric inverse modeling to estimate fossil fuel CO2 (ffCO2) emissions for 2009-2012 from a site in central California, and for June 2013-May 2014 from two sites in southern California. A priori predicted ffCO2 mixing ratios are computed based on regional atmospheric transport model (WRF-STILT) footprints and an hourly ffCO2 prior emission map (Vulcan 2.2). Regional inversions using observations from the central California site suggest that emissions from the San Francisco Bay Area (SFBA) are higher in winter and lower in summer. Taking all years together, the average of a total of fifteen 3-month inversions from 2009 to 2012 suggests ffCO2 emissions from SFBA were within 6 ±â€¯35% of the a priori estimate for that region, where posterior emission uncertainties are reported as 95% confidence intervals. Results for four 3-month inversions using measurements in Los Angeles South Coast Air Basin (SoCAB) during June 2013-May 2014 suggest that emissions in SoCAB are within 13 ±â€¯28% of the a priori estimate for that region, with marginal detection of any seasonality. While emissions from the SFBA and SoCAB urban regions (containing ~50% of prior emissions from California) are constrained by the observations, emissions from the remaining regions are less constrained, suggesting that additional observations will be valuable to more accurately estimate total ffCO2 emissions from California as a whole.

8.
Environ Sci Technol ; 52(17): 10205-10213, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30071722

RESUMO

We estimate postmeter methane (CH4) emissions from California's residential natural gas (NG) system using measurements and analysis from a sample of homes and appliances. Quiescent whole-house emissions (i.e., pipe leaks and pilot lights) were measured using a mass balance method in 75 California homes, while CH4 to CO2 emission ratios were measured for steady operation of individual combustion appliances and, separately, for transient operation of three tankless water heaters. Measured quiescent whole-house emissions are typically <1 g CH4/day, though they exhibit long-tailed gamma distributions containing values >10 g CH4/day. Most operating appliances yield undetectable CH4 to CO2 enhancements in steady operation (<0.01% of gas consumed), though storage water heaters and stovetops exhibit long-tailed gamma distributions containing high values (∼1-3% of gas consumed), and transients are observed for the tankless heaters. Extrapolating results to the state-level using Bayesian Markov chain Monte Carlo sampling combined with California housing statistics and gas use information suggests quiescent house leakage of 23.4 (13.7-45.6, at 95% confidence) Gg CH4, with pilot lights contributing ∼30%. Emissions from steady operation of appliances and their pilots are 13.3 (6.6-37.1) Gg CH4/yr, an order of magnitude larger than current inventory estimates, with transients likely increasing appliance emissions further. Together, emissions from residential NG are 35.7 (21.7-64.0) Gg CH4/yr, equivalent to ∼15% of California's NG CH4 emissions, suggesting leak repair, improvement of combustion appliances, and adoption of nonfossil energy heating sources can help California meet its 2050 climate goals.


Assuntos
Poluentes Atmosféricos , Gás Natural , Teorema de Bayes , California , Metano
9.
Environ Sci Technol ; 51(21): 12981-12987, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29019666

RESUMO

We report 65 individual measurements of methane emissions from 24 oil and gas facilities across California. Methane emission rates were estimated using in situ methane and wind velocity measurements from a small aircraft by a novel Gauss' Theorem flux integral approach. The estimates are compared with annual mean emissions reported to the U.S. Environmental Protection Agency (USEPA) and the California Air Resources Board (CARB) through their respective greenhouse gas reporting programs. The average emissions from 36 measurements of 10 gas storage facilities were within a factor of 2 of emissions reported to USEPA or CARB, though large variance was observed and the reporting database did not contain all of the facilities. In contrast, average emissions from 15 measurements of the three refineries were roughly an order of magnitude more than reported to the USEPA or CARB. The remaining measurements suggest compressor emissions are variable and perhaps slightly larger than reported, and emissions from one oil production facility were roughly concordant with a separate (not GHG reporting) bottom-up estimate from other work. Together, these results provide an initial facility-specific survey of methane emissions from California oil and natural gas infrastructure with observed variability suggesting the need for expanded measurements in the future.


Assuntos
Poluentes Atmosféricos , Metano , Gás Natural , California , Monitoramento Ambiental , Estados Unidos , United States Environmental Protection Agency
10.
Environ Sci Technol ; 51(17): 10012-10021, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28727429

RESUMO

In this study, we explore observational, experimental, methodological, and practical aspects of the flux quantification of greenhouse gases from local point sources by using in situ airborne observations, and suggest a series of conceptual changes to improve flux estimates. We address the major sources of uncertainty reported in previous studies by modifying (1) the shape of the typical flight path, (2) the modeling of covariance and anisotropy, and (3) the type of interpolation tools used. We show that a cylindrical flight profile offers considerable advantages compared to traditional profiles collected as curtains, although this new approach brings with it the need for a more comprehensive subsequent analysis. The proposed flight pattern design does not require prior knowledge of wind direction and allows for the derivation of an ad hoc empirical correction factor to partially alleviate errors resulting from interpolation and measurement inaccuracies. The modified approach is applied to a use-case for quantifying CH4 emission from an oil field south of San Ardo, CA, and compared to a bottom-up CH4 emission estimate.


Assuntos
Poluentes Atmosféricos/análise , Campos de Petróleo e Gás , Gases , Efeito Estufa , Metano , Vento
11.
Environ Sci Technol ; 50(23): 13123-13133, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27934278

RESUMO

We present a gridded inventory of US anthropogenic methane emissions with 0.1° × 0.1° spatial resolution, monthly temporal resolution, and detailed scale-dependent error characterization. The inventory is designed to be consistent with the 2016 US Environmental Protection Agency (EPA) Inventory of US Greenhouse Gas Emissions and Sinks (GHGI) for 2012. The EPA inventory is available only as national totals for different source types. We use a wide range of databases at the state, county, local, and point source level to disaggregate the inventory and allocate the spatial and temporal distribution of emissions for individual source types. Results show large differences with the EDGAR v4.2 global gridded inventory commonly used as a priori estimate in inversions of atmospheric methane observations. We derive grid-dependent error statistics for individual source types from comparison with the Environmental Defense Fund (EDF) regional inventory for Northeast Texas. These error statistics are independently verified by comparison with the California Greenhouse Gas Emissions Measurement (CALGEM) grid-resolved emission inventory. Our gridded, time-resolved inventory provides an improved basis for inversion of atmospheric methane observations to estimate US methane emissions and interpret the results in terms of the underlying processes.


Assuntos
Poluentes Atmosféricos , Metano , Monitoramento Ambiental , Texas , Estados Unidos , United States Environmental Protection Agency
12.
Proc Natl Acad Sci U S A ; 113(11): 2880-5, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26929368

RESUMO

National-scale emissions of carbon tetrachloride (CCl4) are derived based on inverse modeling of atmospheric observations at multiple sites across the United States from the National Oceanic and Atmospheric Administration's flask air sampling network. We estimate an annual average US emission of 4.0 (2.0-6.5) Gg CCl4 y(-1) during 2008-2012, which is almost two orders of magnitude larger than reported to the US Environmental Protection Agency (EPA) Toxics Release Inventory (TRI) (mean of 0.06 Gg y(-1)) but only 8% (3-22%) of global CCl4 emissions during these years. Emissive regions identified by the observations and consistently shown in all inversion results include the Gulf Coast states, the San Francisco Bay Area in California, and the Denver area in Colorado. Both the observation-derived emissions and the US EPA TRI identified Texas and Louisiana as the largest contributors, accounting for one- to two-thirds of the US national total CCl4 emission during 2008-2012. These results are qualitatively consistent with multiple aircraft and ship surveys conducted in earlier years, which suggested significant enhancements in atmospheric mole fractions measured near Houston and surrounding areas. Furthermore, the emission distribution derived for CCl4 throughout the United States is more consistent with the distribution of industrial activities included in the TRI than with the distribution of other potential CCl4 sources such as uncapped landfills or activities related to population density (e.g., use of chlorine-containing bleach).

13.
Environ Sci Technol ; 48(10): 5982-90, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24758763

RESUMO

We present a new, spatially resolved inventory of methane (CH4) emissions based on US-EPA emission factors and publically available activity data for 2010 California petroleum production and natural gas production, processing, transmission, and distribution. Compared to official California bottom-up inventories, our initial estimates are 3 to 7 times higher for the petroleum and natural gas production sectors but similar for the natural gas transmission and distribution sectors. Evidence from published "top-down" atmospheric measurement campaigns within Southern California supports our initial emission estimates from production and processing but indicates emission estimates from transmission and distribution are low by a factor of approximately 2. To provide emission maps with more accurate total emissions we scale the spatially resolved inventory by sector-specific results from a Southern California aircraft measurement campaign to all of California. Assuming uncertainties are determined by the uncertainties estimated in the top-down study, our estimated state total CH4 emissions are 541 ± 144 Gg yr(-1) (as compared with 210.7 Gg yr(-1) in California's current official inventory), where the majority of our reported uncertainty is derived from transmission and distribution. We note uncertainties relative to the mean for a given region are likely larger than that for the State total, emphasizing the need for additional measurements in undersampled regions.


Assuntos
Poluentes Atmosféricos/análise , Metano/análise , Gás Natural/análise , Petróleo/análise , California , Geografia , Campos de Petróleo e Gás/química
14.
Proc Natl Acad Sci U S A ; 110(50): 20018-22, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24277804

RESUMO

This study quantitatively estimates the spatial distribution of anthropogenic methane sources in the United States by combining comprehensive atmospheric methane observations, extensive spatial datasets, and a high-resolution atmospheric transport model. Results show that current inventories from the US Environmental Protection Agency (EPA) and the Emissions Database for Global Atmospheric Research underestimate methane emissions nationally by a factor of ∼1.5 and ∼1.7, respectively. Our study indicates that emissions due to ruminants and manure are up to twice the magnitude of existing inventories. In addition, the discrepancy in methane source estimates is particularly pronounced in the south-central United States, where we find total emissions are ∼2.7 times greater than in most inventories and account for 24 ± 3% of national emissions. The spatial patterns of our emission fluxes and observed methane-propane correlations indicate that fossil fuel extraction and refining are major contributors (45 ± 13%) in the south-central United States. This result suggests that regional methane emissions due to fossil fuel extraction and processing could be 4.9 ± 2.6 times larger than in EDGAR, the most comprehensive global methane inventory. These results cast doubt on the US EPA's recent decision to downscale its estimate of national natural gas emissions by 25-30%. Overall, we conclude that methane emissions associated with both the animal husbandry and fossil fuel industries have larger greenhouse gas impacts than indicated by existing inventories.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Atmosfera/análise , Monitoramento Ambiental/estatística & dados numéricos , Metano/análise , Agricultura/estatística & dados numéricos , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Indústrias Extrativas e de Processamento/estatística & dados numéricos , Modelos Químicos , Estados Unidos
15.
Proc Natl Acad Sci U S A ; 109(46): 18713-8, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23091030

RESUMO

Climate models show that particles formed by nucleation can affect cloud cover and, therefore, the earth's radiation budget. Measurements worldwide show that nucleation rates in the atmospheric boundary layer are positively correlated with concentrations of sulfuric acid vapor. However, current nucleation theories do not correctly predict either the observed nucleation rates or their functional dependence on sulfuric acid concentrations. This paper develops an alternative approach for modeling nucleation rates, based on a sequence of acid-base reactions. The model uses empirical estimates of sulfuric acid evaporation rates obtained from new measurements of neutral molecular clusters. The model predicts that nucleation rates equal the sulfuric acid vapor collision rate times a prefactor that is less than unity and that depends on the concentrations of basic gaseous compounds and preexisting particles. Predicted nucleation rates and their dependence on sulfuric acid vapor concentrations are in reasonable agreement with measurements from Mexico City and Atlanta.


Assuntos
Equilíbrio Ácido-Base , Poluição do Ar , Ar , Modelos Químicos , Georgia , México
17.
Environ Sci Technol ; 46(17): 9282-9, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22853880

RESUMO

We use historical and new atmospheric trace gas observations to refine the estimated source of methane (CH(4)) emitted into California's South Coast Air Basin (the larger Los Angeles metropolitan region). Referenced to the California Air Resources Board (CARB) CO emissions inventory, total CH(4) emissions are 0.44 ± 0.15 Tg each year. To investigate the possible contribution of fossil fuel emissions, we use ambient air observations of methane (CH(4)), ethane (C(2)H(6)), and carbon monoxide (CO), together with measured C(2)H(6) to CH(4) enhancement ratios in the Los Angeles natural gas supply. The observed atmospheric C(2)H(6) to CH(4) ratio during the ARCTAS (2008) and CalNex (2010) aircraft campaigns is similar to the ratio of these gases in the natural gas supplied to the basin during both these campaigns. Thus, at the upper limit (assuming that the only major source of atmospheric C(2)H(6) is fugitive emissions from the natural gas infrastructure) these data are consistent with the attribution of most (0.39 ± 0.15 Tg yr(-1)) of the excess CH(4) in the basin to uncombusted losses from the natural gas system (approximately 2.5-6% of natural gas delivered to basin customers). However, there are other sources of C(2)H(6) in the region. In particular, emissions of C(2)H(6) (and CH(4)) from natural gas seeps as well as those associated with petroleum production, both of which are poorly known, will reduce the inferred contribution of the natural gas infrastructure to the total CH(4) emissions, potentially significantly. This study highlights both the value and challenges associated with the use of ethane as a tracer for fugitive emissions from the natural gas production and distribution system.


Assuntos
Poluentes Atmosféricos/análise , Atmosfera/análise , Metano/análise , Monóxido de Carbono/análise , Monitoramento Ambiental , Etano/análise , Los Angeles , Gás Natural/análise
18.
Environ Sci Technol ; 43(14): 5535-41, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19708393

RESUMO

Quantification of fossil fuel CO2 emissions at fine space and time resolution is emerging as a critical need in carbon cycle and climate change research. As atmospheric CO2 measurements expand with the advent of a dedicated remote sensing platform and denser in situ measurements, the ability to close the carbon budget at spatial scales of approximately 100 km2 and daily time scales requires fossil fuel CO2 inventories at commensurate resolution. Additionally, the growing interest in U.S. climate change policy measures are best served by emissions that are tied to the driving processes in space and time. Here we introduce a high resolution data product (the "Vulcan" inventory: www.purdue.edu/eas/carbon/vulcan/) that has quantified fossil fuel CO2 emissions for the contiguous U.S. at spatial scales less than 100 km2 and temporal scales as small as hours. This data product completed for the year 2002, includes detail on combustion technology and 48 fuel types through all sectors of the U.S. economy. The Vulcan inventory is built from the decades of local/regional air pollution monitoring and complements these data with census, traffic, and digital road data sets. The Vulcan inventory shows excellent agreement with national-level Department of Energy inventories, despite the different approach taken by the DOE to quantify U.S. fossil fuel CO2 emissions. Comparison to the global 1degree x 1 degree fossil fuel CO2 inventory, used widely by the carbon cycle and climate change community prior to the construction of the Vulcan inventory, highlights the space/time biases inherent in the population-based approach.


Assuntos
Poluentes Atmosféricos/química , Dióxido de Carbono/química , Combustíveis Fósseis , Emissões de Veículos/análise , Poluição do Ar , Monitoramento Ambiental , Estados Unidos
19.
Environ Sci Technol ; 37(10): 2114-9, 2003 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12785515

RESUMO

Simultaneous temporally resolved indoor and outdoor measurements of ammonia and nitric acid are valuable for determining the gas-particle equilibrium conditions governing concentrations of ammonium nitrate aerosol. We report the results of simultaneous automated indoor and outdoor measurements of ammonia and nitric acid concentrations made at an unoccupied, single-story residence in Clovis, CA during three periods from October 2000 to January 2001. The measurements were conducted as part of a controlled study to explore mechanisms governing indoor concentrations of fine aerosols of outdoor origin. The gas-phase measurements were performed using diffusion denuders and ion chromatography with 30 min temporal resolution and detection limits below 1 ppb. The conditions of the field experiment span a wide range of outdoor climate as well as natural and forced indoor conditions. During all periods ammonia concentrations were generally slightly higher indoors than out, with both outdoor and indoor concentrations varying in a range from approximately 5 to 30 ppb. Nitric acid was only detected in outdoor air in October 2000, at concentrations up to 3 ppb. During the October period, the product of outdoor nitric acid and ammonia concentrations sometimes deviated from that expected for equilibrium between gas and ammonium nitrate particulate phases and the degree and direction of disequilibrium were correlated with trends in air temperature. The consistently low indoor concentrations of nitric acid were not consistent with equilibrium between gas and particle phases and suggest that a combination of low penetration into the building and a high loss rate for nitric acid reduce indoor concentrations significantly below those outdoors.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Amônia/análise , Monitoramento Ambiental , Ácido Nítrico/análise , Aerossóis , Poluentes Atmosféricos/normas , California , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...