Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nat Phys ; 20(4): 579-584, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638456

RESUMO

Spontaneously broken symmetries are at the heart of many phenomena of quantum matter and physics more generally. However, determining the exact symmetries that are broken can be challenging due to imperfections such as strain, in particular when multiple electronic orders are competing. This is exemplified by charge order in some kagome systems, where evidence of nematicity and flux order from orbital currents remains inconclusive due to contradictory measurements. Here we clarify this controversy by fabricating highly symmetric samples of a member of this family, CsV3Sb5, and measuring their transport properties. We find that a measurable anisotropy is absent at any temperature in the unperturbed material. However, a pronounced in-plane transport anisotropy appears when either weak magnetic fields or strains are present. A symmetry analysis indicates that a perpendicular magnetic field can indeed lead to in-plane anisotropy by inducing a flux order coexisting with more conventional bond order. Our results provide a unifying picture for the controversial charge order in kagome metals and highlight the need for materials control at the microscopic scale in the identification of broken symmetries.

2.
Plast Reconstr Surg Glob Open ; 12(3): e5665, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38440365

RESUMO

Background: Studies comparing carpal tunnel release with ultrasound guidance (CTR-US) to mini-open CTR (mOCTR) are limited. This randomized trial compared the efficacy and safety of these techniques. Methods: In this multicenter randomized trial, patients were randomized (2:1) to unilateral CTR-US or mOCTR. Outcomes included Boston Carpal Tunnel Questionnaire Symptom Severity Scale (BCTQ-SSS) and Functional Status Scale (BCTQ-FSS), numeric pain scale (0-10), EuroQoL-5 Dimension 5-Level (EQ-5D-5L), scar outcomes, and complications over 1 year. Results: Patients received CTR-US (n = 94) via wrist incision (mean 6 mm) or mOCTR (n = 28) via palmar incision (mean 22 mm). Comparing CTR-US with mOCTR, the mean changes in BCTQ-SSS (-1.8 versus -1.8; P = 0.96), BCTQ-FSS (-1.0 versus -1.0; P = 0.75), numeric pain scale (-3.9 versus -3.8; P = 0.74), and EQ-5D-5L (0.13 versus 0.12; P = 0.79) over 1 year were comparable between groups. Freedom from scar sensitivity or pain favored CTR-US (95% versus 74%; P = 0.005). Complications occurred in 2.1% versus 3.6% of patients (P = 0.55), all within 3 weeks postprocedure. There was one revision surgery in the CTR-US group, and no revisions for persistent or recurrent symptoms in either group. Conclusions: CTR-US and mOCTR demonstrated similar improvement in carpal tunnel syndrome symptoms and quality of life with comparable low complication rates over 1 year of follow-up. CTR-US was performed with a smaller incision and associated with less scar discomfort.

3.
Nat Mach Intell ; 6(2): 180-186, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404481

RESUMO

The removal or cancellation of noise has wide-spread applications in imaging and acoustics. In applications in everyday life, such as image restoration, denoising may even include generative aspects, which are unfaithful to the ground truth. For scientific use, however, denoising must reproduce the ground truth accurately. Denoising scientific data is further challenged by unknown noise profiles. In fact, such data will often include noise from multiple distinct sources, which substantially reduces the applicability of simulation-based approaches. Here we show how scientific data can be denoised by using a deep convolutional neural network such that weak signals appear with quantitative accuracy. In particular, we study X-ray diffraction and resonant X-ray scattering data recorded on crystalline materials. We demonstrate that weak signals stemming from charge ordering, insignificant in the noisy data, become visible and accurate in the denoised data. This success is enabled by supervised training of a deep neural network with pairs of measured low- and high-noise data. We additionally show that using artificial noise does not yield such quantitatively accurate results. Our approach thus illustrates a practical strategy for noise filtering that can be applied to challenging acquisition problems.

4.
Fungal Biol ; 127(12): 1491-1504, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38097323

RESUMO

Unlike the mechanism of ballistospore discharge, which was not solved until the 1980s, the operation of asci as pressurized squirt guns is relatively straightforward and was understood in the nineteenth century. Since then, mycologists have sought to understand how structural adaptations to asci have allowed the ascomycetes to expel spores of different shapes and sizes over distances ranging from a few millimeters to tens of centimeters. These modifications include the use of valves at the tips of asci that maintain ascus pressure and expel spores at the highest speeds, and gelatinous appendages that connect spores after release and create larger projectiles with greater momentum than single spores. Clever experiments in the twentieth century coupled with meticulous microscopic studies led investigators to understand how asci with complicated apical structures worked and mathematical models produced estimates of launch speeds. With the recent application of high-speed video microscopy, these inferences about ascus function have been tested by imaging the motion of spores on a microsecond timescale. These experiments have established that ascospore discharge is the fastest fungal movement and is among the fastest movements in biology. Beginning with the history of the study of asci, this review article explains how asci are pressurized, how spores are released, and how far spores travel after their release. We also consider the efficiency of ascospore discharge relative to the mechanism of ballistospore discharge and examine the way that the squirt gun mechanism has limited the morphological diversity of ascomycete fruit bodies.


Assuntos
Ascomicetos , Armas de Fogo , Esporos Fúngicos/ultraestrutura
5.
Expert Rev Med Devices ; 20(7): 597-605, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37254502

RESUMO

BACKGROUND: Comparative studies of carpal tunnel release with ultrasound guidance (CTR-US) vs. mini-open CTR (mOCTR) are limited, prompting development of this randomized trial to compare efficacy and safety of these techniques. RESEARCH DESIGN AND METHODS: Patients were randomized (2:1) to CTR-US or mOCTR, treated by experienced hand surgeons (median previous cases: 12 CTR-US; 1000 mOCTR), and followed for 3 months. RESULTS: Among 149 randomized patients, 122 received CTR-US (n = 94) or mOCTR (n = 28). Mean incision length was 6 ± 2 mm in the wrist (CTR-US) vs. 22 ± 7 mm in the palm (mOCTR) (p < 0.001). Median time to return to daily activities (2 vs. 2 days; p = 0.81) and work (3 vs. 4 days; p = 0.61) were similar. Both groups reported statistically significant and clinically important improvements in Boston Carpal Tunnel Questionnaire Symptom Severity and Functional Status Scales, Numeric Pain Scale, and EuroQoL-5 Dimension 5-Level, with no statistical differences between groups. Freedom from wound sensitivity and pain favored CTR-US (61.1% vs. 17.9%; p < 0.001). Adverse event rates were low in each group (2.1% vs. 3.6%; p = 0.55). CONCLUSIONS: The efficacy and safety of CTR-US were comparable to mOCTR despite less previous surgical experience with CTR-US. The choice of CTR technique should be determined by shared decision-making between patient and physician. CLINICAL TRIAL REGISTRATION: www.clinicaltrials.gov identifier is NCT05405218.


Assuntos
Síndrome do Túnel Carpal , Humanos , Resultado do Tratamento , Síndrome do Túnel Carpal/diagnóstico por imagem , Síndrome do Túnel Carpal/cirurgia , Mãos , Ultrassonografia , Dor
6.
Nature ; 611(7936): 461-466, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36224393

RESUMO

When electric conductors differ from their mirror image, unusual chiral transport coefficients appear that are forbidden in achiral metals, such as a non-linear electric response known as electronic magnetochiral anisotropy (eMChA)1-6. Although chiral transport signatures are allowed by symmetry in many conductors without a centre of inversion, they reach appreciable levels only in rare cases in which an exceptionally strong chiral coupling to the itinerant electrons is present. So far, observations of chiral transport have been limited to materials in which the atomic positions strongly break mirror symmetries. Here, we report chiral transport in the centrosymmetric layered kagome metal CsV3Sb5 observed via second-harmonic generation under an in-plane magnetic field. The eMChA signal becomes significant only at temperatures below [Formula: see text] 35 K, deep within the charge-ordered state of CsV3Sb5 (TCDW ≈ 94 K). This temperature dependence reveals a direct correspondence between electronic chirality, unidirectional charge order7 and spontaneous time-reversal symmetry breaking due to putative orbital loop currents8-10. We show that the chirality is set by the out-of-plane field component and that a transition from left- to right-handed transport can be induced by changing the field sign. CsV3Sb5 is the first material in which strong chiral transport can be controlled and switched by small magnetic field changes, in stark contrast to structurally chiral materials, which is a prerequisite for applications in chiral electronics.

7.
Medicine (Baltimore) ; 101(41): e30775, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36254038

RESUMO

BACKGROUND: Carpal tunnel release (CTR) is a surgical treatment option for patients with carpal tunnel syndrome (CTS) symptoms that are unresponsive to conservative treatment. Most patients experience symptomatic relief after CTR regardless of the surgical technique. However, direct comparisons of the safety and effectiveness between CTR surgical techniques are limited. The purpose of this randomized controlled trial is to compare the safety and effectiveness of CTR with ultrasound guidance (CTR-US) versus mini-open CTR (mOCTR) in subjects with symptomatic CTS. DESIGN AND METHODS: TUTOR (Trial of Ultrasound guided CTR versus Traditional Open Release) is a randomized controlled trial in which 120 subjects at up to 12 sites in the United States will be randomized (2:1) to receive CTR-US or mOCTR. The primary endpoint of the study is the percentage of patients who return to normal daily activities within 3 days of the procedure. Secondary endpoints of the study are median time to return to normal daily activities, percentage of patients who return to work within 3 days of the procedure, median time to return to work, Boston Carpal Tunnel Questionnaire Symptom Severity Scale (BCTQ-SSS) change score at 3 months, BCTQ Functional Status Scale (BCTQ-FSS) change score at 3 months, Numeric Pain Scale change score at 3 months, EuroQoL-5 Dimension 5-Level (EQ-5D-5L) change score at 3 months, and the incidence of device- or procedure-related adverse events at 3 months. Patient follow-up in this trial will continue for 1 year. ETHICS AND DISSEMINATION: This study was approved by a central institutional review board and ongoing trial oversight will be provided by a data safety monitoring board (DSMB). The authors intend to report the results of this trial at medical conferences and peer-reviewed journals. The outcomes of TUTOR will have important clinical and economic implications for all stakeholders involved in treating patients with CTS. STUDY REGISTRATION: ClinicalTrials.gov (https://clinicaltrials.gov): NCT05405218. LEVEL OF EVIDENCE: 1.


Assuntos
Síndrome do Túnel Carpal , Síndrome do Túnel Carpal/diagnóstico por imagem , Síndrome do Túnel Carpal/cirurgia , Humanos , Inquéritos e Questionários , Ultrassonografia , Ultrassonografia de Intervenção , Punho
8.
Phys Rev Lett ; 127(17): 177001, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34739258

RESUMO

The recent discovery of AV_{3}Sb_{5} (A=K,Rb,Cs) has uncovered an intriguing arena for exotic Fermi surface instabilities in a kagome metal. Among them, superconductivity is found in the vicinity of multiple van Hove singularities, exhibiting indications of unconventional pairing. We show that the sublattice interference mechanism is central to understanding the formation of superconductivity in a kagome metal. Starting from an appropriately chosen minimal tight-binding model with multiple van Hove singularities close to the Fermi level for AV_{3}Sb_{5}, we provide a random phase approximation analysis of superconducting instabilities. Nonlocal Coulomb repulsion, the sublattice profile of the van Hove bands, and the interaction strength turn out to be the crucial parameters to determine the preferred pairing symmetry. Implications for potentially topological surface states are discussed, along with a proposal for additional measurements to pin down the nature of superconductivity in AV_{3}Sb_{5}.

9.
Science ; 374(6567): 608-611, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34709897

RESUMO

The idea that preformed Cooper pairs could exist in a superconductor at temperatures higher than its zero-resistance critical temperature (Tc) has been explored for unconventional, interfacial, and disordered superconductors, but direct experimental evidence is lacking. We used scanning tunneling noise spectroscopy to show that preformed Cooper pairs exist up to temperatures much higher than Tc in the disordered superconductor titanium nitride by observing an enhancement in the shot noise that is equivalent to a change of the effective charge from one to two electron charges. We further show that the spectroscopic gap fills up rather than closes with increasing temperature. Our results demonstrate the existence of a state above Tc that, much like an ordinary metal, has no (pseudo)gap but carries charge through paired electrons.

10.
Nat Commun ; 12(1): 5681, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584085

RESUMO

We introduce the exceptional topological insulator (ETI), a non-Hermitian topological state of matter that features exotic non-Hermitian surface states which can only exist within the three-dimensional topological bulk embedding. We show how this phase can evolve from a Weyl semimetal or Hermitian three-dimensional topological insulator close to criticality when quasiparticles acquire a finite lifetime. The ETI does not require any symmetry to be stabilized. It is characterized by a bulk energy point gap, and exhibits robust surface states that cover the bulk gap as a single sheet of complex eigenvalues or with a single exceptional point. The ETI can be induced universally in gapless solid-state systems, thereby setting a paradigm for non-Hermitian topological matter.

11.
Phys Rev Lett ; 124(24): 247001, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32639809

RESUMO

The modern understanding of topological insulators is based on Wannier obstructions in position space. Motivated by this insight, we study topological superconductors from a position-space perspective. For a one-dimensional superconductor, we show that the wave function of an individual Cooper pair decays exponentially with separation in the trivial phase and polynomially in the topological phase. For the position-space Majorana representation, we show that the topological phase is characterized by a nonzero Majorana polarization, which captures an irremovable and quantized separation of Majorana Wannier centers from the atomic positions. We apply our results to diagnose second-order topological superconducting phases in two dimensions. Our work establishes a vantage point for the generalization of topological quantum chemistry to superconductivity.

12.
PLoS One ; 14(9): e0222456, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31525231

RESUMO

This study examines the occurrence of humpback whale (Megaptera novaeangliae) song in the northeast Pacific from three years of continuous recordings off central California (36.713°N, 122.186°W). Song is prevalent in this feeding and migratory habitat, spanning nine months of the year (September-May), peaking in winter (November-January), and reaching a maximum of 86% temporal coverage (during November 2017). From the rise of song in fall through the end of peak occurrence in winter, song length increases significantly from month to month. The seasonal peak in song coincides with the seasonal trough in day length and sighting-based evidence of whales leaving Monterey Bay, consistent with seasonal migration. During the seasonal song peak, diel variation shows maximum occurrence at night (69% of the time), decreasing during dawn and dusk (52%), and further decreasing with increasing solar elevation during the day, reaching a minimum near solar noon (30%). Song occurrence increased 44% and 55% between successive years. Sighting data within the acoustic detection range of the hydrophone indicate that variation in local population density was an unlikely cause of this large interannual variation. Hydrographic data and modeling of acoustic transmission indicate that changes in neither habitat occupancy nor acoustic transmission were probable causes. Conversely, the positive interannual trend in song paralleled major ecosystem variations, including similarly large positive trends in wind-driven upwelling, primary productivity, and krill abundance. Further, the lowest song occurrence during the first year coincided with anomalously warm ocean temperatures and an extremely toxic harmful algal bloom that affected whales and other marine mammals in the region. These major ecosystem variations may have influenced the health and behavior of humpback whales during the study period.


Assuntos
Migração Animal/fisiologia , Jubarte/fisiologia , Vocalização Animal/fisiologia , Animais , California , Ecossistema , Densidade Demográfica , Estações do Ano , Temperatura
13.
Phys Rev Lett ; 121(15): 157003, 2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-30362795

RESUMO

Traditionally, in three dimensions, the only symmetries essential for superconductivity are time reversal (T) and inversion (I). Here, we examine superconductivity in two dimensions and find that T and I are not required, and having a combination of either symmetry with a mirror operation (M_{z}) on the basal plane is sufficient. By combining energetic and topological arguments, we classify superconducting states when T and I are not present, a situation encountered in several experimentally relevant systems, such as transition metal dichalcogenides or a two-dimensional Rashba system, when subject to an applied field, and in superconducting monolayer FeSe with Néel antiferromagnetic order. Energetic arguments suggest interesting superconducting states arise. For example, we find a unique pure intraband pairing state with Majorana chiral edge states in Néel-ordered FeSe. Employing topological arguments, we find when the only symmetry is the combination of I with M_{z}, the superconducting states are generically fully gapped and can have topologically protected chiral Majorana edge modes. In all other cases, there are no chiral Majorana edge states, but the superconducting bulk can have point nodes with associated topologically protected flatband Majorana edge modes. Our analysis provides guidance on the design and search for novel two-dimensional superconductors and superconducting heterostructures.

14.
Nat Commun ; 8: 14985, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28397804

RESUMO

Theoretically, it has been known that breaking spin degeneracy and effectively realizing spinless fermions is a promising path to topological superconductors. Yet, topological superconductors are rare to date. Here we propose to realize spinless fermions by splitting the spin degeneracy in momentum space. Specifically, we identify monolayer hole-doped transition metal dichalcogenide (TMD)s as candidates for topological superconductors out of such momentum-space-split spinless fermions. Although electron-doped TMDs have recently been found superconducting, the observed superconductivity is unlikely topological because of the near spin degeneracy. Meanwhile, hole-doped TMDs with momentum-space-split spinless fermions remain unexplored. Employing a renormalization group analysis, we propose that the unusual spin-valley locking in hole-doped TMDs together with repulsive interactions selectively favours two topological superconducting states: interpocket paired state with Chern number 2 and intrapocket paired state with finite pair momentum. A confirmation of our predictions will open up possibilities for manipulating topological superconductors on the device-friendly platform of monolayer TMDs.

15.
Phys Rev Lett ; 116(16): 160401, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27152775

RESUMO

Coupling a many-body-localized system to a dissipative bath necessarily leads to delocalization. Here, we investigate the nature of the ensuing relaxation dynamics and the information it holds on the many-body-localized state. We formulate the relevant Lindblad equation in terms of the local integrals of motion of the underlying localized Hamiltonian. This allows us to map the quantum evolution deep in the localized state to tractable classical rate equations. We consider two different types of dissipation relevant to systems of ultracold atoms: dephasing due to inelastic scattering on the lattice lasers and particle loss. Our approach allows us to characterize their different effects in the limiting cases of weak and strong interactions.

16.
PLoS One ; 10(10): e0140407, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26509436

RESUMO

Millions of tons of fungal spores are dispersed in the atmosphere every year. These living cells, along with plant spores and pollen grains, may act as nuclei for condensation of water in clouds. Basidiospores released by mushrooms form a significant proportion of these aerosols, particularly above tropical forests. Mushroom spores are discharged from gills by the rapid displacement of a droplet of fluid on the cell surface. This droplet is formed by the condensation of water on the spore surface stimulated by the secretion of mannitol and other hygroscopic sugars. This fluid is carried with the spore during discharge, but evaporates once the spore is airborne. Using environmental electron microscopy, we have demonstrated that droplets reform on spores in humid air. The kinetics of this process suggest that basidiospores are especially effective as nuclei for the formation of large water drops in clouds. Through this mechanism, mushroom spores may promote rainfall in ecosystems that support large populations of ectomycorrhizal and saprotrophic basidiomycetes. Our research heightens interest in the global significance of the fungi and raises additional concerns about the sustainability of forests that depend on heavy precipitation.


Assuntos
Agaricales/fisiologia , Chuva , Esporos Fúngicos/fisiologia , Agaricales/ultraestrutura , Umidade , Especificidade da Espécie , Esporos Fúngicos/ultraestrutura , Água
18.
Science ; 349(6250): 842-5, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26229112

RESUMO

Many-body localization (MBL), the disorder-induced localization of interacting particles, signals a breakdown of conventional thermodynamics because MBL systems do not thermalize and show nonergodic time evolution. We experimentally observed this nonergodic evolution for interacting fermions in a one-dimensional quasirandom optical lattice and identified the MBL transition through the relaxation dynamics of an initially prepared charge density wave. For sufficiently weak disorder, the time evolution appears ergodic and thermalizing, erasing all initial ordering, whereas above a critical disorder strength, a substantial portion of the initial ordering persists. The critical disorder value shows a distinctive dependence on the interaction strength, which is in agreement with numerical simulations. Our experiment paves the way to further detailed studies of MBL, such as in noncorrelated disorder or higher dimensions.

19.
Fungal Biol ; 119(6): 471-5, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25986543

RESUMO

The distinctive shapes of basidiomata in the bird's nest fungi reflect differences in the mechanism of splash discharge. In the present study, peridiole discharge was examined in Nidularia pulvinata using high-speed video. Nidularia pulvinata produces globose basidiomata that split open at maturity to expose 100 or more peridioles within a gelatinous matrix. Each peridiole contains an estimated 7 million spores. The impact of water drops splashed the peridioles horizontally from the fruit body, along with globs of mucilage, at a mean velocity of 1.2 m s(-1). Discharged peridioles travelled for a maximum horizontal distance of 1.5 cm. This launch process contrasts with the faster vertical splashes of peridioles over distances of up to one metre from the flute-shaped fruit bodies of bird's nest fungi in the genera Crucibulum and Cyathus. Peridioles in these genera are equipped with a funicular cord that attaches them to vegetation, placing them in an ideal location for ingestion by browsing herbivores. The absence of cords in N. pulvinata and its use of a sloppy discharge mechanism suggest that it is more likely to be dispersed by animals feeding on the forest floor.


Assuntos
Agaricales/citologia , Agaricales/fisiologia , Esporos Fúngicos/citologia , Esporos Fúngicos/fisiologia , Agaricales/crescimento & desenvolvimento , Microscopia de Vídeo , Esporos Fúngicos/crescimento & desenvolvimento
20.
Environ Res ; 141: 58-68, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25667172

RESUMO

The toxicity of methylmercury (MeHg) in humans is well established and the main source of exposure is via the consumption of large marine fish and mammals. Of particular concern are the potential neurodevelopmental effects of early life exposure to low-levels of MeHg. Therefore, it is important that pregnant women, children and women of childbearing age are, as far as possible, protected from MeHg exposure. Within the European project DEMOCOPHES, we have analyzed mercury (Hg) in hair in 1799 mother-child pairs from 17 European countries using a strictly harmonized protocol for mercury analysis. Parallel, harmonized questionnaires on dietary habits provided information on consumption patterns of fish and marine products. After hierarchical cluster analysis of consumption habits of the mother-child pairs, the DEMOCOPHES cohort can be classified into two branches of approximately similar size: one with high fish consumption (H) and another with low consumption (L). All countries have representatives in both branches, but Belgium, Denmark, Spain, Portugal and Sweden have twice as many or more mother-child pairs in H than in L. For Switzerland, Czech Republic, Hungary, Poland, Romania, Slovenia and Slovakia the situation is the opposite, with more representatives in L than H. There is a strong correlation (r=0.72) in hair mercury concentration between the mother and child in the same family, which indicates that they have a similar exposure situation. The clustering of mother-child pairs on basis of their fish consumption revealed some interesting patterns. One is that for the same sea fish consumption, other food items of marine origin, like seafood products or shellfish, contribute significantly to the mercury levels in hair. We conclude that additional studies are needed to assess and quantify exposure to mercury from seafood products, in particular. The cluster analysis also showed that 95% of mothers who consume once per week fish only, and no other marine products, have mercury levels 0.55 µg/g. Thus, the 95th percentile of the distribution in this group is only around half the US-EPA recommended threshold of 1 µg/g mercury in hair. Consumption of freshwater fish played a minor role in contributing to mercury exposure in the studied cohort. The DEMOCOPHES data shows that there are significant differences in MeHg exposure across the EU and that exposure is highly correlated with consumption of fish and marine products. Fish and marine products are key components of a healthy human diet and are important both traditionally and culturally in many parts of Europe. Therefore, the communication of the potential risks of mercury exposure needs to be carefully balanced to take into account traditional and cultural values as well as the potential health benefits from fish consumption. European harmonized human biomonitoring programs provide an additional dimension to national HMB programs and can assist national authorities to tailor mitigation and adaptation strategies (dietary advice, risk communication, etc.) to their country's specific requirements.


Assuntos
Monitoramento Ambiental/métodos , Contaminação de Alimentos/análise , Preferências Alimentares , Cabelo/química , Compostos de Metilmercúrio/análise , Alimentos Marinhos , Poluentes Químicos da Água/análise , Adulto , Criança , Interpretação Estatística de Dados , Europa (Continente) , Estudos de Viabilidade , Feminino , Humanos , Pessoa de Meia-Idade , Mães , Projetos Piloto , População Rural , Inquéritos e Questionários , População Urbana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...