Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Genet Dev ; 86: 102177, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38461773

RESUMO

Live imaging has revealed that the regulation of gene expression is largely driven by transient interactions. For example, many regulatory proteins bind chromatin for just seconds, and loop-like genomic contacts are rare and last only minutes. These discoveries have been difficult to reconcile with our canonical models that are predicated on stable and hierarchical interactions. Proteomic microenvironments that concentrate nuclear factors may explain how brief interactions can still mediate gene regulation by creating conditions where reactions occur more frequently. Here, we summarize new imaging technologies and recent discoveries implicating microenvironments as a potential driver of nuclear function. Finally, we propose that key properties of proteomic microenvironments, such as their size, enrichment, and lifetimes, are directly linked to regulatory function.


Assuntos
Núcleo Celular , Cromatina , Regulação da Expressão Gênica , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Humanos , Regulação da Expressão Gênica/genética , Animais , Proteômica , Microambiente Celular/genética
2.
Dev Biol ; 505: 141-147, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37977522

RESUMO

The regulation of gene expression in precise, rapidly changing spatial patterns is essential for embryonic development. Multiple enhancers have been identified for the evolving expression patterns of the cascade of Drosophila segmentation genes that establish the basic body plan of the fly. Classic reporter transgene experiments identified multiple cis-regulatory elements (CREs) that are sufficient to direct various aspects of the evolving expression pattern of the pair-rule gene fushi tarazu (ftz). These include enhancers that coordinately activate expression in all seven stripes and stripe-specific elements that activate expression in one or more ftz stripes. Of the two 7-stripe enhancers, analysis of reporter transgenes demonstrated that the upstream element (UPS) is autoregulatory, requiring direct binding of Ftz protein to direct striped expression. Here, we asked about the endogenous role of the UPS by precisely deleting this 7-stripe enhancer. In ftzΔUPS7S homozygotes, ftz stripes appear in the same order as wildtype, and all but stripe 4 are expressed at wildtype levels by the end of the cellular blastoderm stage. This suggests that the zebra element and UPS harbor information to direct stripe 4 expression, although previous deletion analyses failed to identify a stripe-specific CRE within these two 7-stripe enhancers. However, the UPS is necessary for late ftz stripe expression, with all 7 stripes decaying earlier than wildtype in ftzΔUPS7S homozygotes. Despite this premature loss of ftz expression, downstream target gene regulation proceeds as in wildtype, and segmentation is unperturbed in the overwhelming majority of animals. We propose that this late-acting enhancer provides a buffer against perturbations in gene expression but is not required for establishment of Ftz cell fates. Overall, our results demonstrate that multiple enhancers, each directing distinct aspects of an overall gene expression pattern, contribute to fine-tuning the complex patterns necessary for embryonic development.


Assuntos
Proteínas de Drosophila , Animais , Blastoderma/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fatores de Transcrição Fushi Tarazu/genética , Fatores de Transcrição Fushi Tarazu/metabolismo , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética
3.
G3 (Bethesda) ; 11(11)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34518886

RESUMO

Expression of genes in precisely controlled spatiotemporal patterns is essential for embryonic development. Much of our understanding of mechanisms regulating gene expression comes from the study of cis-regulatory elements (CREs) that direct expression of reporter genes in transgenic organisms. This reporter-transgene approach identifies genomic regions sufficient to drive expression but fails to provide information about quantitative and qualitative contributions to endogenous expression, although such conclusions are often inferred. Here we evaluated the endogenous function of a classic Drosophila CRE, the fushi tarazu (ftz) zebra element. ftz is a pair-rule segmentation gene expressed in seven stripes during embryogenesis, necessary for formation of alternate body segments. Reporter transgenes identified the promoter-proximal zebra element as a major driver of the seven ftz stripes. We generated a precise genomic deletion of the zebra element (ftzΔZ) to assess its role in the context of native chromatin and neighboring CREs, expecting large decreases in ftz seven-stripe expression. However, significant reduction in expression was found for only one stripe, ftz stripe 4, expressed at ∼25% of wild type levels in ftzΔZ homozygotes. Defects in corresponding regions of ftzΔZ mutants suggest this level of expression borders the threshold required to promote morphological segmentation. Further, we established true-breeding lines of homozygous ftzΔZ flies, demonstrating that the body segments missing in the mutants are not required for viability or fertility. These results highlight the different types of conclusions drawn from different experimental designs and emphasize the importance of examining transcriptional regulatory mechanisms in the context of the native genomic environment.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fertilidade/genética , Fatores de Transcrição Fushi Tarazu , Proteínas de Homeodomínio/metabolismo , Sequências Reguladoras de Ácido Nucleico , Projetos de Pesquisa
4.
Plant Methods ; 14: 91, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30349582

RESUMO

BACKGROUND: Insertion of engineered DNA fragments into bacterial vectors is the foundation of recombinant DNA technology, yet existing methods are still laborious, require many steps, depend on specific vector configuration, or require expensive reagents. RESULTS: We have developed a method, called "Pyrite" cloning that combines the traditional restriction enzyme digestion and ligation reaction in a single tube and uses a programmed thermocycler reaction, allowing rapid and flexible cloning in a single tube. After the Pyrite reaction and transformation, approximately 50% colonies contain the expected insert, which can be easily and quickly determined by colony PCR or blue-white colony screening. We also demonstrated that Pyrite cloning can be applied for different cloning purposes. CONCLUSIONS: The Pyrite cloning method reported here is a single tube and programmed reaction cloning with restriction enzymes. Compared to other cloning methods, Pyrite cloning is flexible, inexpensive, simple, and highly efficient.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...