Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 34(21): 6285-6295, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29685034

RESUMO

Fluid fatty alcohols are believed to be nanostructured but broadly amorphous (i.e., noncrystalline) fluids and solvents, including the most popular fatty tissue mimetic, hydrated n-octanol (i.e., hydro-octanol). To check this premise, we studied dry octanol and hydro-octanol as a model of relatively short fluid n-alkanols with small-angle X-ray scattering (SAXS). We also combined this alkanol with the matching alkane (i.e., octane) and with a common anti-inflammatory pain killer (ketoprofen). This revealed that (hydro-)octanol and arguably any other short fatty alcohol form a mesophase. Its basic structural motif are regularly packed polar nanoclusters, reflected in the inner peak in the SAXS diffractogram of (hydro-)octanol and other fluid n-alkanols. The nanoclusters arguably resemble tiny, (inverse) hydrated bilayer fragments, located on a thermally smeared para-crystalline lattice. Additives to hydro-octanol can change the nanoclusters only moderately, if at all. For example, octane and the drug ketoprofen added to hydro-octanol enlarge the nanoclusters only little because of the mixture's packing frustration. To associate with and to bring more water into hydro-octanol, an additive must hence transform the nanoclusters: it expands them into irregularly distributed aqueous lacunae that form a proto-microemulsion, reflected in the previously unknown Guinier's SAXS signal. A "weak" (i.e., a weakly polar or nonpolar) additive can moreover create only size-limited lacunae. Coexistence of nanoclusters and lacunae as well as size variability of the latter in hydro-octanol subvert the concept of octanol-water partition coefficient, which relies on the studied compartment homogeneity. In turn, it opens new possibilities for interfacial catalysis. Reinterpreting "octanol-water partition coefficient" data in terms of octanol-water association or binding constant(s) could furthermore diminish the variability of molecular lipophilicity description and pave the ground toward a more precise theoretical quantification and prediction of molecular properties.

2.
Artigo em Inglês | MEDLINE | ID: mdl-25768540

RESUMO

A basic understanding of biological membranes is of paramount importance as these membranes comprise the very building blocks of life itself. Cells depend in their function on a range of properties of the membrane, which are important for the stability and function of the cell, information and nutrient transport, waste disposal, and finally the admission of drugs into the cell and also the deflection of bacteria and viruses. We have investigated the influence of ibuprofen on the structure and dynamics of L-α-phosphatidylcholine (SoyPC) membranes by means of grazing incidence small-angle neutron scattering, neutron reflectometry, and grazing incidence neutron spin echo spectroscopy. From the results of these experiments, we were able to determine that ibuprofen induces a two-step structuring behavior in the SoyPC films, where the structure evolves from the purely lamellar phase for pure SoyPC over a superposition of two hexagonal phases to a purely hexagonal phase at high concentrations. A relaxation, which is visible when no ibuprofen is present in the membrane, vanishes upon addition of ibuprofen. This we attribute to a stiffening of the membrane. This behavior may be instrumental in explaining the toxic behavior of ibuprofen in long-term application.


Assuntos
Anti-Inflamatórios não Esteroides/química , Ibuprofeno/química , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Anti-Inflamatórios não Esteroides/toxicidade , Elasticidade , Ibuprofeno/toxicidade , Difração de Nêutrons , Espalhamento a Baixo Ângulo , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...