Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891445

RESUMO

This research investigates the application of plastic fiber reinforcement in pre-tensioned reinforced concrete railway sleepers, conducting an in-depth examination in both experimental and computational aspects. Utilizing 3-point bending tests and the GOM ARAMIS system for Digital Image Correlation, this study meticulously evaluates the structural responses and crack development in conventional and plastic fiber-reinforced sleepers under varying bending moments. Complementing these tests, the investigation employs ABAQUS' advanced finite element modeling to enhance the analysis, ensuring precise calibration and validation of the numerical models. This dual approach comprehensively explains the mechanical behavior differences and stresses within the examined structures. The incorporation of plastic fibers not only demonstrates a significant improvement in mechanical strength and crack resistance but paves the way for advancements in railway sleeper technology. By shedding light on the enhanced durability and performance of reinforced concrete structures, this study makes a significant contribution to civil engineering materials science, highlighting the potential for innovative material applications in the construction industry.

2.
Sensors (Basel) ; 22(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36365912

RESUMO

Railway damage detection is of great significance in ensuring railway safety. The cracks on the rail surface play a key role in studying the formation and development process of rail damage, predicting the occurrence of rail defects, and then improving the service life of the rail. However, due to the small shape of the cracks, the typical detection method is relatively complicated, and the speed is quite slow. Although traditional magnetic particle inspection technology is fairly accurate at detection, it is costly and inconvenient to carry and install, while also limiting the detection speed and affecting the system's operation. In this paper, a semantic segmentation detection method is developed by using various collected rail surface crack data and deep learning through a neural network. By comparing the inspection of the same rail surface with magnetic particle inspection technology, only inexpensive cameras are used and the inspection speed is increased while maintaining relatively high accuracy. In addition, the method can achieve fast detection speeds if it is extended to be combined with high-frequency cameras. It is an economical, efficient, and environmentally friendly method for future rail surface detection.


Assuntos
Fenômenos Magnéticos , Semântica , Fenômenos Físicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA