Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Front Cell Neurosci ; 18: 1360195, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550920

RESUMO

The blood brain barrier (BBB) plays a crucial role in maintaining brain homeostasis by selectively preventing the entry of substances from the peripheral blood into the central nervous system (CNS). Comprised of endothelial cells, pericytes, and astrocytes, this highly regulated barrier encompasses the majority of the brain's vasculature. In addition to its protective function, the BBB also engages in significant crosstalk with perivascular macrophages (MΦ) and microglia, the resident MΦ of the brain. These interactions play a pivotal role in modulating the activation state of cells comprising the BBB, as well as MΦs and microglia, themselves. Alterations in systemic metabolic and inflammatory states can promote endothelial cell dysfunction, reducing the integrity of the BBB and potentially allowing peripheral blood factors to leak into the CNS compartment. This may mediate activation of perivascular MΦs, microglia, and astrocytes, and initiate further immune responses within the brain parenchyma, suggesting neuroinflammation can be triggered by signaling from the periphery, without primary injury or disease originating within the CNS. The intricate interplay between the periphery and the CNS through the BBB highlights the importance of understanding the role of microglia in mediating responses to systemic challenges. Despite recent advancements, our understanding of the interactions between microglia and the BBB is still in its early stages, leaving a significant gap in knowledge. However, emerging research is shedding light on the involvement of microglia at the BBB in various conditions, including systemic infections, diabetes, and ischemic stroke. This review aims to provide a comprehensive overview of the current research investigating the intricate relationship between microglia and the BBB in health and disease. By exploring these connections, we hope to advance our understanding of the role of brain immune responses to systemic challenges and their impact on CNS health and pathology. Uncovering these interactions may hold promise for the development of novel therapeutic strategies for neurological conditions that involve immune and vascular mechanisms.

2.
Nat Commun ; 14(1): 4414, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479685

RESUMO

Elevation in soluble urokinase receptor (suPAR) and proteinuria are common signs in patients with moderate to severe coronavirus disease 2019 (COVID-19). Here we characterize a new type of proteinuria originating as part of a viral response. Inoculation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes increased suPAR levels and glomerulopathy in African green monkeys. Using an engineered mouse model with high suPAR expression, inhaled variants of SARS-CoV-2 spike S1 protein elicite proteinuria that could be blocked by either suPAR antibody or SARS-CoV-2 vaccination. In a cohort of 1991 COVID-19 patients, suPAR levels exhibit a stepwise association with proteinuria in non-Omicron, but not in Omicron infections, supporting our findings of biophysical and functional differences between variants of SARS-CoV-2 spike S1 protein and their binding to podocyte integrins. These insights are not limited to SARS-CoV-2 and define viral response proteinuria (VRP) as an innate immune mechanism and co-activation of podocyte integrins.


Assuntos
COVID-19 , Podócitos , Animais , Camundongos , Chlorocebus aethiops , Humanos , Vacinas contra COVID-19 , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , SARS-CoV-2 , Integrinas , Proteinúria
3.
Elife ; 122023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37417740

RESUMO

Infection with the etiological agent of COVID-19, SARS-CoV-2, appears capable of impacting cognition in some patients with post-acute sequelae of SARS-CoV-2 (PASC). To evaluate neuropathophysiological consequences of SARS-CoV-2 infection, we examine transcriptional and cellular signatures in the Brodmann area 9 (BA9) of the frontal cortex and the hippocampal formation (HF) in SARS-CoV-2, Alzheimer's disease (AD), and SARS-CoV-2-infected AD individuals compared to age- and gender-matched neurological cases. Here, we show similar alterations of neuroinflammation and blood-brain barrier integrity in SARS-CoV-2, AD, and SARS-CoV-2-infected AD individuals. Distribution of microglial changes reflected by the increase in Iba-1 reveals nodular morphological alterations in SARS-CoV-2-infected AD individuals. Similarly, HIF-1α is significantly upregulated in the context of SARS-CoV-2 infection in the same brain regions regardless of AD status. The finding may help in informing decision-making regarding therapeutic treatments in patients with neuro-PASC, especially those at increased risk of developing AD.


Assuntos
Doença de Alzheimer , COVID-19 , Humanos , SARS-CoV-2 , Barreira Hematoencefálica , Cognição , Progressão da Doença
4.
Mol Cell Proteomics ; 22(4): 100523, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870567

RESUMO

Neurologic manifestations are among the most frequently reported complications of COVID-19. However, given the paucity of tissue samples and the highly infectious nature of the etiologic agent of COVID-19, we have limited information to understand the neuropathogenesis of COVID-19. Therefore, to better understand the impact of COVID-19 on the brain, we used mass-spectrometry-based proteomics with a data-independent acquisition mode to investigate cerebrospinal fluid (CSF) proteins collected from two different nonhuman primates, Rhesus Macaque and African Green Monkeys, for the neurologic effects of the infection. These monkeys exhibited minimal to mild pulmonary pathology but moderate to severe central nervous system (CNS) pathology. Our results indicated that CSF proteome changes after infection resolution corresponded with bronchial virus abundance during early infection and revealed substantial differences between the infected nonhuman primates and their age-matched uninfected controls, suggesting these differences could reflect altered secretion of CNS factors in response to SARS-CoV-2-induced neuropathology. We also observed the infected animals exhibited highly scattered data distributions compared to their corresponding controls indicating the heterogeneity of the CSF proteome change and the host response to the viral infection. Dysregulated CSF proteins were preferentially enriched in functional pathways associated with progressive neurodegenerative disorders, hemostasis, and innate immune responses that could influence neuroinflammatory responses following COVID-19. Mapping these dysregulated proteins to the Human Brain Protein Atlas found that they tended to be enriched in brain regions that exhibit more frequent injury following COVID-19. It, therefore, appears reasonable to speculate that such CSF protein changes could serve as signatures for neurologic injury, identify important regulatory pathways in this process, and potentially reveal therapeutic targets to prevent or attenuate the development of neurologic injuries following COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Chlorocebus aethiops , Proteínas do Líquido Cefalorraquidiano , Proteoma , Macaca mulatta
5.
bioRxiv ; 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36451886

RESUMO

Infection with the etiological agent of COVID-19, SARS-CoV-2, appears capable of impacting cognition, which some patients with Post-acute Sequelae of SARS-CoV-2 (PASC). To evaluate neuro-pathophysiological consequences of SARS-CoV-2 infection, we examine transcriptional and cellular signatures in the Broadman area 9 (BA9) of the frontal cortex and the hippocampal formation (HF) in SARS-CoV-2, Alzheimer's disease (AD) and SARS-CoV-2 infected AD individuals, compared to age- and gender-matched neurological cases. Here we show similar alterations of neuroinflammation and blood-brain barrier integrity in SARS-CoV-2, AD, and SARS-CoV-2 infected AD individuals. Distribution of microglial changes reflected by the increase of Iba-1 reveal nodular morphological alterations in SARS-CoV-2 infected AD individuals. Similarly, HIF-1α is significantly upregulated in the context of SARS-CoV-2 infection in the same brain regions regardless of AD status. The finding may help to inform decision-making regarding therapeutic treatments in patients with neuro-PASC, especially those at increased risk of developing AD. Teaser: SARS-CoV-2 and Alzheimer's disease share similar neuroinflammatory processes, which may help explain neuro-PASC.

6.
Nat Commun ; 13(1): 1745, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365631

RESUMO

Neurological manifestations are a significant complication of coronavirus disease (COVID-19), but underlying mechanisms aren't well understood. The development of animal models that recapitulate the neuropathological findings of autopsied brain tissue from patients who died from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are critical for elucidating the neuropathogenesis of infection and disease. Here, we show neuroinflammation, microhemorrhages, brain hypoxia, and neuropathology that is consistent with hypoxic-ischemic injury in SARS-CoV-2 infected non-human primates (NHPs), including evidence of neuron degeneration and apoptosis. Importantly, this is seen among infected animals that do not develop severe respiratory disease, which may provide insight into neurological symptoms associated with "long COVID". Sparse virus is detected in brain endothelial cells but does not associate with the severity of central nervous system (CNS) injury. We anticipate our findings will advance our current understanding of the neuropathogenesis of SARS-CoV-2 infection and demonstrate SARS-CoV-2 infected NHPs are a highly relevant animal model for investigating COVID-19 neuropathogenesis among human subjects.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Encéfalo , Células Endoteliais , Humanos , Primatas
7.
Front Aging Neurosci ; 13: 653694, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408638

RESUMO

The outbreak of the novel and highly infectious severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has resulted in hundreds of millions of infections and millions of deaths globally. Infected individuals that progress to coronavirus disease-19 (COVID-19) experience upper and lower respiratory complications that range in severity and may lead to wide-spread inflammation and generalized hypoxia or hypoxemia that impacts multiple organ systems, including the central and peripheral nervous systems. Since the SARS-CoV-2 outbreak, multiple reports continue to emerge that detail neurological symptoms, ranging from relatively mild (e.g., impaired taste and/or smell) to severe (e.g., stroke), suggesting SARS-CoV-2 may be neurotropic and/or contribute to nervous system injury through direct and/or indirect mechanisms. To gain insight into the types of neurological complications associated with SARS-CoV-2 infection and their possible relationship with age, sex, COVID-19 severity, and comorbidities, we performed a systematic review of case reports and series published in 2020 - April 4, 2021 of infected patients with neurological manifestations. Meta-analyses were conducted using individual patient data from reports where these data could be extracted. Here, we report neurological injury occurs across the lifespan in the context of infection, with and without known comorbidities, and with all disease severities, including asymptomatic patients. Older individuals, however, are more susceptible to developing life-threatening COVID-19 and cerebrovascular disease (CVD), such as stroke. A mild but inverse correlation with age was seen with CNS inflammatory diseases, such as encephalitis, as well as taste and/or smell disorders. When reported, increased age was also associated with comorbid cardiovascular risk factors, including hypertension, diabetes mellitus, and lipid disorders, but not with obesity. Obesity did correlate with development of critical COVID-19. Discussion into potential pathophysiological mechanisms by which neurological symptoms arise and long-term consequences of infection to the nervous system is also provided.

8.
JCI Insight ; 6(16)2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34241597

RESUMO

Evidence suggests an association between severe acute respiratory syndrome-cornavirus-2 (SARS-CoV-2) infection and the occurrence of new-onset diabetes. We examined pancreatic expression of angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2), the cell entry factors for SARS-CoV-2, using publicly available single-cell RNA sequencing data sets, and pancreatic tissue from control male and female nonhuman primates (NHPs) and humans. We also examined SARS-CoV-2 immunolocalization in pancreatic cells of SARS-CoV-2-infected NHPs and patients who had died from coronavirus disease 2019 (COVID-19). We report expression of ACE2 in pancreatic islet, ductal, and endothelial cells in NHPs and humans. In pancreata from SARS-CoV-2-infected NHPs and COVID-19 patients, SARS-CoV-2 infected ductal, endothelial, and islet cells. These pancreata also exhibited generalized fibrosis associated with multiple vascular thrombi. Two out of 8 NHPs developed new-onset diabetes following SARS-CoV-2 infection. Two out of 5 COVID-19 patients exhibited new-onset diabetes at admission. These results suggest that SARS-CoV-2 infection of the pancreas may promote acute and especially chronic pancreatic dysfunction that could potentially lead to new-onset diabetes.


Assuntos
COVID-19/complicações , Diabetes Mellitus/etiologia , Pâncreas/virologia , SARS-CoV-2/isolamento & purificação , Trombose/etiologia , Enzima de Conversão de Angiotensina 2/análise , Animais , Chlorocebus aethiops , Feminino , Fibrose , Humanos , Macaca mulatta , Masculino , Serina Endopeptidases/análise
9.
Am J Pathol ; 191(2): 274-282, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33171111

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces a wide range of disease severity, ranging from asymptomatic infection to a life-threating illness, particularly in the elderly population and individuals with comorbid conditions. Among individuals with serious coronavirus 2019 (COVID-19) disease, acute respiratory distress syndrome (ARDS) is a common and often fatal presentation. Animal models of SARS-CoV-2 infection that manifest severe disease are needed to investigate the pathogenesis of COVID-19-induced ARDS and evaluate therapeutic strategies. We report two cases of ARDS in two aged African green monkeys (AGMs) infected with SARS-CoV-2 that had pathological lesions and disease similar to severe COVID-19 in humans. We also report a comparatively mild COVID-19 phenotype characterized by minor clinical, radiographic, and histopathologic changes in the two surviving, aged AGMs and four rhesus macaques (RMs) infected with SARS-CoV-2. Notable increases in circulating cytokines were observed in three of four infected, aged AGMs but not in infected RMs. All the AGMs had increased levels of plasma IL-6 compared with baseline, a predictive marker and presumptive therapeutic target in humans infected with SARS-CoV-2. Together, our results indicate that both RMs and AGMs are capable of modeling SARS-CoV-2 infection and suggest that aged AGMs may be useful for modeling severe disease manifestations, including ARDS.


Assuntos
COVID-19/etiologia , Pulmão/virologia , SARS-CoV-2/patogenicidade , Envelhecimento , Animais , Chlorocebus aethiops/virologia , Infecções por Coronavirus/tratamento farmacológico , Citocinas/metabolismo , Humanos , Pulmão/patologia , Macaca mulatta/virologia , Carga Viral/métodos
10.
Am J Respir Cell Mol Biol ; 64(1): 79-88, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32991819

RESUMO

Preclinical mouse models that recapitulate some characteristics of coronavirus disease (COVID-19) will facilitate focused study of pathogenesis and virus-host responses. Human agniotensin-converting enzyme 2 (hACE2) serves as an entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to infect people via binding to envelope spike proteins. Herein we report development and characterization of a rapidly deployable COVID-19 mouse model. C57BL/6J (B6) mice expressing hACE2 in the lung were transduced by oropharyngeal delivery of the recombinant human adenovirus type 5 that expresses hACE2 (Ad5-hACE2). Mice were infected with SARS-CoV-2 at Day 4 after transduction and developed interstitial pneumonia associated with perivascular inflammation, accompanied by significantly higher viral load in lungs at Days 3, 6, and 12 after infection compared with Ad5-empty control group. SARS-CoV-2 was detected in pneumocytes in alveolar septa. Transcriptomic analysis of lungs demonstrated that the infected Ad5-hACE mice had a significant increase in IFN-dependent chemokines Cxcl9 and Cxcl10, and genes associated with effector T-cell populations including Cd3 g, Cd8a, and Gzmb. Pathway analysis showed that several Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were enriched in the data set, including cytokine-cytokine receptor interaction, the chemokine signaling pathway, the NOD-like receptor signaling pathway, the measles pathway, and the IL-17 signaling pathway. This response is correlative to clinical response in lungs of patients with COVID-19. These results demonstrate that expression of hACE2 via adenovirus delivery system sensitized the mouse to SARS-CoV-2 infection and resulted in the development of a mild COVID-19 phenotype, highlighting the immune and inflammatory host responses to SARS-CoV-2 infection. This rapidly deployable COVID-19 mouse model is useful for preclinical and pathogenesis studies of COVID-19.


Assuntos
Células Epiteliais Alveolares/imunologia , COVID-19/imunologia , Expressão Gênica , SARS-CoV-2/imunologia , Transdução de Sinais/imunologia , Adenoviridae/genética , Adenoviridae/metabolismo , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/virologia , Enzima de Conversão de Angiotensina 2/biossíntese , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Animais , COVID-19/genética , COVID-19/metabolismo , COVID-19/patologia , Citocinas/genética , Citocinas/imunologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Transdução de Sinais/genética , Transdução Genética
11.
Theranostics ; 10(16): 7448-7464, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32642005

RESUMO

The COVID-19 pandemic is an emerging threat to global public health. While our current understanding of COVID-19 pathogenesis is limited, a better understanding will help us develop efficacious treatment and prevention strategies for COVID-19. One potential therapeutic target is angiotensin converting enzyme 2 (ACE2). ACE2 primarily catalyzes the conversion of angiotensin I (Ang I) to a nonapeptide angiotensin or the conversion of angiotensin II (Ang II) to angiotensin 1-7 (Ang 1-7) and has direct effects on cardiac function and multiple organs via counter-regulation of the renin-angiotensin system (RAS). Significant to COVID-19, ACE2 is postulated to serve as a major entry receptor for SARS-CoV-2 in human cells, as it does for SARS-CoV. Many infected individuals develop COVID-19 with fever, cough, and shortness of breath that can progress to pneumonia. Disease progression promotes the activation of immune cells, platelets, and coagulation pathways that can lead to multiple organ failure and death. ACE2 is expressed by epithelial cells of the lungs at high level, a major target of the disease, as seen in post-mortem lung tissue of patients who died with COVID-19, which reveals diffuse alveolar damage with cellular fibromyxoid exudates bilaterally. Comparatively, ACE2 is expressed at low level by vascular endothelial cells of the heart and kidney but may also be targeted by the virus in severe COVID-19 cases. Interestingly, SARS-CoV-2 infection downregulates ACE2 expression, which may also play a critical pathogenic role in COVID-19. Importantly, targeting ACE2/Ang 1-7 axis and blocking ACE2 interaction with the S protein of SARS-CoV-2 to curtail SARS-CoV-2 infection are becoming very attractive therapeutics potential for treatment and prevention of COVID-19. Here, we will discuss the following subtopics: 1) ACE2 as a receptor of SARS-CoV-2; 2) clinical and pathological features of COVID-19; 3) role of ACE2 in the infection and pathogenesis of SARS; 4) potential pathogenic role of ACE2 in COVID-19; 5) animal models for pathological studies and therapeutics; and 6) therapeutics development for COVID-19.


Assuntos
Betacoronavirus , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , Receptores Virais/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Enzima de Conversão de Angiotensina 2 , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Antivirais/uso terapêutico , Betacoronavirus/química , Betacoronavirus/patogenicidade , Betacoronavirus/fisiologia , COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/terapia , Modelos Animais de Doenças , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Camundongos , Modelos Biológicos , Pandemias , Pneumonia Viral/terapia , Sistema Renina-Angiotensina/fisiologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Nanomedicina Teranóstica , Vacinas Virais/isolamento & purificação , Internalização do Vírus
12.
Nat Commun ; 11(1): 2280, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385245

RESUMO

Renal macrophages (RMs) participate in tissue homeostasis, inflammation and repair. RMs consist of embryo-derived (EMRMs) and bone marrow-derived RMs (BMRMs), but the fate, dynamics, replenishment, functions and metabolic states of these two RM populations remain unclear. Here we investigate and characterize RMs at different ages by conditionally labeling and ablating RMs populations in several transgenic lines. We find that RMs expand and mature in parallel with renal growth after birth, and are mainly derived from fetal liver monocytes before birth, but self-maintain through adulthood with contribution from peripheral monocytes. Moreover, after the RMs niche is emptied, peripheral monocytes rapidly differentiate into BMRMs, with the CX3CR1/CX3CL1 signaling axis being essential for the maintenance and regeneration of both EMRMs and BMRMs. Lastly, we show that EMRMs have a higher capacity for scavenging immune complex, and are more sensitive to immune challenge than BMRMs, with this difference associated with their distinct glycolytic capacities.


Assuntos
Células da Medula Óssea/citologia , Linhagem da Célula , Rim/embriologia , Macrófagos/citologia , Animais , Receptor 1 de Quimiocina CX3C/metabolismo , Quimiocina CX3CL1/sangue , Quimiocina CX3CL1/metabolismo , Feminino , Feto/citologia , Fígado/embriologia , Masculino , Camundongos , Monócitos/citologia
13.
J Cell Physiol ; 235(10): 7383-7391, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32052452

RESUMO

Models of macrophage subtypes require molecular characterization to reliably facilitate their differentiation. Although CD16+ (Fc-gamma III receptor) monocytes that express CD163 (a hemoglobin/haptoglobin receptor) have been implicated in a variety of disease states, the conditions necessary to establish lineages of these cell subtypes remains unknown. The current investigations utilize a cell line derived from acute myelogenous leukemia lineage, MonoMac-1, to interrogate the factors that promote the development of CD16+ macrophages that express CD163. Results implicate the glucocorticoid pathway as well as c-fms signaling based on the action of dexamethasone and macrophage colony-stimulating factor-1 in promoting CD16+ expression, in addition to phorbol myristate acetate and lipopolysaccharides treatment. The ability of glucocorticoid and c-fms receptor antagonists to inhibit CD16+ cell formation further establishes the role of these pathways in CD16 expression in this cell line. In view of the inherent difficulty in working with primary cells as well as donor variation, cell lines may be preferable to primary cells for their consistency. We envision that the process we use to induce CD16 expression in this cell type will be useful for screening and identification of drug candidates potentially useful for the treatment of diseases where the etiology involves the expansion of the CD16+ monocytes subset or the accumulation of CD163+ tissue macrophages.


Assuntos
Diferenciação Celular/fisiologia , Glucocorticoides/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Transdução de Sinais/fisiologia , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/fisiologia , Genes fms/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de IgG/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
Mol Ther Nucleic Acids ; 12: 275-282, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30195766

RESUMO

We used NOD/SCID mice, also known as NRG, to assess the ability of lentivirus-mediated intravenous delivery of CRISPR in editing the HIV-1 genome from the circulating PBMC engrafts, some of which homed within several animal solid tissues. Lentivirus-mediated delivery of a multiplex of guide RNAs accompanied by Cas9 endonuclease led to the excision of the targeted region of the viral genome positioned within the HIV-1 LTR from the in-vitro-infected human peripheral blood mononuclear cells (PBMCs) embedded in the spleens of NRG mice. Similarly, the treatment of NRG mice harboring PBMC engrafts derived from HIV-1-positive patients with the therapeutic lentivirus eliminated the presence of the viral DNA fragment in the blood, as well as in the spleen, lung, and liver, of the engrafted animals. Sanger sequence analysis of the viral DNA after treatment with the lentiviral vectors expressing Cas9 and gRNAs verified the editing and removal of the proviral DNA fragment from the viral genome at the predicted sites. This proof-of-concept study, for the first time, demonstrates successful excision of the HIV-1 proviral DNA from patient immune cell engrafts in humanized mice upon treatment with lentivirus-expressing CRISPR and causes a decline in the level of replication-competent virus.

15.
Ann Neurol ; 83(2): 406-417, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29369399

RESUMO

OBJECTIVE: CD16+ /CD163+ macrophages (MΦs) and microglia accumulate in the brains of patients with human immunodeficiency virus (HIV) encephalitis (HIVE), a neuropathological correlate of the most severe form of HIV-associated neurocognitive disorders, HIV-associated dementia. Recently, we found that some parenchymal microglia in brain of HIV+ subjects without encephalitis (HIV/noE) but with varying degrees of neurocognitive impairment express CD16 and CD163, even in the absence of detectable virus production. To further our understanding of microglial activation in HIV, we investigated expression of specific genes by profiling parenchymal microglia from archival brain tissue of patients with HIVE and HIV/noE, and HIV- controls. METHODS: Single-population microarray analyses were performed on ∼2,500 laser capture microdissected CD163+ , CD16+ , or CD68+ MΦs/microglia per case, using terminal continuation RNA amplification and a custom-designed array platform. RESULTS: Several classes of microglial transcripts in HIVE and HIV/noE were altered, relative to HIV- subjects, including factors related to cell stress, immune activation, and apoptosis. Additionally, several neurotrophic factors were reduced in HIV infection, suggesting an additional mechanism of neuropathogenesis. The majority of transcripts altered in HIVE displayed intermediate changes in HIV/noE. INTERPRETATION: Our results support the notion that microglia contribute to the maintenance of brain homeostasis and their potential loss of function in the context of chronic inflammation contributes to neuropathogenesis. Furthermore, they indicate the utility of profiling MΦs/microglia to increase our understanding of microglia function, as well as to ascertain alterations in specific pathways, genes, and potentially, encoded proteins that may be amenable to targeted treatment modalities in diseases affecting the brain. Ann Neurol 2018;83:406-417.


Assuntos
Complexo AIDS Demência/imunologia , Disfunção Cognitiva/imunologia , Infecções por HIV/imunologia , Microglia/imunologia , Complexo AIDS Demência/complicações , Complexo AIDS Demência/patologia , Adulto , Feminino , Perfilação da Expressão Gênica , Infecções por HIV/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
19.
Respir Res ; 18(1): 8, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28061907

RESUMO

BACKGROUND: Long-acting muscarinic antagonist/long-acting ß2-agonist combinations are recommended for patients whose chronic obstructive pulmonary disease (COPD) is not managed with monotherapy. We assessed the efficacy and safety of glycopyrrolate (GP)/formoterol fumarate (FF) fixed-dose combination delivered via a Co-Suspension™ Delivery Technology-based metered dose inhaler (MDI) (GFF MDI). METHODS: This was a Phase IIb randomized, multicenter, placebo-controlled, double-blind, chronic-dosing (7 days), crossover study in patients with moderate-to-very severe COPD ( NCT01085045 ). Treatments included GFF MDI twice daily (BID) (GP/FF 72/9.6 µg or 36/9.6 µg), GP MDI 36 µg BID, FF MDI 7.2 and 9.6 µg BID, placebo MDI, and open-label formoterol dry powder inhaler (FF DPI) 12 µg BID or tiotropium DPI 18 µg once daily. The primary endpoint was forced expiratory volume in 1 s area under the curve from 0 to 12 h (FEV1 AUC0-12) on Day 7 relative to baseline FEV1. Secondary endpoints included pharmacokinetics and safety. RESULTS: GFF MDI 72/9.6 µg or 36/9.6 µg led to statistically significant improvements in FEV1 AUC0-12 after 7 days' treatment versus monocomponent MDIs, placebo MDI, tiotropium, or FF DPI (p ≤ 0.0002). GFF MDI 36/9.6 µg was non-inferior to GFF MDI 72/9.6 µg and monocomponent MDIs were non-inferior to open-label comparators. Pharmacokinetic results showed glycopyrrolate and formoterol exposure were decreased following administration via fixed-dose combination versus monocomponent MDIs; however, this was not clinically meaningful. GFF MDI was well tolerated. CONCLUSIONS: GFF MDI 72/9.6 µg and 36/9.6 µg BID improve lung function and are well tolerated in patients with moderate-to-very severe COPD. TRIAL REGISTRATION: ClinicalTrials.gov NCT01085045 . Registered 9 March 2010.


Assuntos
Fumarato de Formoterol/administração & dosagem , Glicopirrolato/administração & dosagem , Inaladores Dosimetrados , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Administração por Inalação , Agonistas de Receptores Adrenérgicos beta 2/administração & dosagem , Adulto , Idoso , Austrália , Método Duplo-Cego , Combinação de Medicamentos , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Glicopirrolato/efeitos adversos , Humanos , Masculino , Pessoa de Meia-Idade , Antagonistas Muscarínicos/administração & dosagem , Nova Zelândia , Efeito Placebo , Índice de Gravidade de Doença , Resultado do Tratamento , Estados Unidos
20.
Chest ; 151(2): 340-357, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27916620

RESUMO

BACKGROUND: Long-acting muscarinic antagonist (LAMA)/long-acting ß2-agonist (LABA) combinations are a treatment option for patients with COPD who continue to have symptoms despite treatment with a LAMA or a LABA alone. The Efficacy and Safety of PT003, PT005, and PT001 in Subjects with Moderate-to-Very Severe COPD (PINNACLE-1) (NCT01854645) and the Multi-Center Study to Assess the Efficacy and Safety of PT003, PT005, and PT001 in Subjects with Moderate-to-Very Severe COPD (PINNACLE-2) (NCT01854658) trials investigated the efficacy and safety of a novel glycopyrrolate [GP]/formoterol [FF] 18/9.6-µg (GFF) metered dose inhaler (MDI) formulated using the Co-Suspension Delivery Technology in patients with moderate-to-very severe COPD. METHODS: These two phase III trials took place over 24 weeks and were randomized, double blind, and placebo controlled; 2,103 and 1,615 patients (40-80 years of age), respectively, were randomized. Patients received GFF MDI, GP MDI 18 µg, FF MDI 9.6 µg, or placebo MDI (all twice daily), or tiotropium 18 µg dry powder inhaler (once daily in PINNACLE-1 only [open-label active comparator]). Efficacy and safety were assessed. RESULTS: At week 24, differences in change from baseline in the morning predose trough FEV1 for GFF MDI vs placebo MDI, GP MDI, and FF MDI were 150 mL, 59 mL, and 64 mL in PINNACLE-1 (all P < .0001) and 103 mL, 54 mL, and 56 mL in PINNACLE-2 (all P < .001), respectively. There were no significant safety findings (incidence of adverse events was similar between treatment arms). CONCLUSIONS: We conclude that GFF MDI 18/9.6 µg demonstrated superiority over placebo and monocomponent MDIs and was well tolerated, thus providing an additional treatment option for patients with moderate-to-very severe COPD. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT01854645 and No. NCT01854658; URL: www.clinicaltrials.gov.


Assuntos
Broncodilatadores/administração & dosagem , Fumarato de Formoterol/administração & dosagem , Glicopirrolato/administração & dosagem , Antagonistas Muscarínicos/administração & dosagem , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Administração por Inalação , Adulto , Idoso , Idoso de 80 Anos ou mais , Budesonida/uso terapêutico , Método Duplo-Cego , Combinação de Medicamentos , Quimioterapia Combinada , Feminino , Fluticasona/uso terapêutico , Volume Expiratório Forçado , Glucocorticoides/uso terapêutico , Humanos , Masculino , Inaladores Dosimetrados , Pessoa de Meia-Idade , Prednisona/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Suspensões , Capacidade Vital
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...