Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Test Anal ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38389255

RESUMO

Cathinones are often sold as "legal" alternatives to controlled stimulants such as amphetamine, MDMA and cocaine. Cathinones are the second largest group of new psychoactive substances (NPS), with close to 170 monitored by the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). Although all cathinones are related to the parent compound cathinone, one of the psychoactive principles in khat, assigning consistent, informative and user-friendly common names to these substances is challenging. Over time different naming approaches have been applied, leading to cathinones being known by several names. This work provides a framework and practical examples for the consistent naming of cathinones which is easy to understand and can be applied by the forensic community, researchers, clinical practitioners, and policy makers. The scope of the issue and rationale for earlier naming approaches are also discussed. The new naming framework has been developed based on established naming approaches and centered around the common "cathinone," and "phenone" motifs/scaffolds. The proposed framework establishes clear rules to derive the EMCDDA framework names for cathinones. Each name is, in turn, composed by a principal name containing a parent letter, derived after the "cathinone" or the "phenone" scaffold. Additional substitutions are prepended to the principal name. The framework also provides for exceptions for several cathinones and structural analogs scheduled under UN and EU legislation.

2.
Drug Test Anal ; 15(3): 255-276, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36346325

RESUMO

Synthetic cannabinoids (SCs), often sold as "legal" replacements for cannabis, are the largest group of new psychoactive substances monitored by the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). Currently, close to 240 structurally heterogeneous SCs are monitored through the European Union (EU) Early Warning System, and attributing consistent, informative, and user-friendly names to SCs has been a challenge in the past. Over time, several naming conventions have been employed with the aim of making SCs more easily recognizable by non-chemists, including regulators. To achieve this, the names assigned need to contain detailed information on the structural features present in the substance. This work provides a theoretical framework and a practical hands-on guideline for consistent naming of SCs, which is easy to understand and can be applied by the forensic community, researchers, clinical practitioners, and policy-makers. The proposed framework builds on the established letter code system for molecular building blocks (core, linker, linked group, and tail) implemented by the EMCDDA in 2013 and has been expanded to incorporate additional structural features through substitution. The scope of the issue of attributing semi-systematic code names is illustrated, and earlier approaches used for naming SCs are discussed. The concepts and rules of the EMCDDA framework are described through a flowchart that provides a basis for naming new SCs, a graphical overview of the chemical diversity of SCs, and a detailed list of the SCs identified in the EU by the Early Warning System of the EMCDDA for reference.


Assuntos
Canabinoides , Alucinógenos , Transtornos Relacionados ao Uso de Substâncias , Humanos , Agonistas de Receptores de Canabinoides , União Europeia
3.
Arch Toxicol ; 96(10): 2755-2766, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35788413

RESUMO

Synthetic cannabinoids (SC) are new psychoactive substances known to cause intoxications and fatalities. One reason may be the limited data available concerning the toxicokinetics of SC, but toxicity mechanisms are insufficiently understood so far. Human carboxylesterases (hCES) are widely known to play a crucial role in the catalytic hydrolysis of drugs (of abuse). The aim of this study was to investigate the in vitro contribution of hCES to the metabolism of the 13 SC 3,5-AB-5F-FUPPYCA, AB-5F-P7AICA, A-CHMINACA, DMBA-CHMINACA, MBA-CHMINACA, MDMB-4F-BINACA, MDMB-4en-PINACA, MDMB-FUBICA, MDMB-5F-PICA, MMB-CHMICA, MMB-4en-PICA, MMB-FUBINACA, and MPhP-5F-PICA. The SC were incubated with recombinant hCES1b, hCES1c, or hCES2 and analyzed by liquid chromatography-ion trap mass spectrometry to assess amide or ester hydrolysis in an initial activity screening. Enzyme kinetic studies were performed if sufficient hydrolysis was observed. No hydrolysis of the amide linker was observed using those experimental conditions. Except for MDMB-5F-PICA, ester hydrolysis was always detected if an ester group was present in the head group. In general, SC with a terminal ester bearing a small alcohol part and a larger acyl part showed higher affinity to hCES1 isozymes. Due to the low hydrolysis rates, enzyme kinetics could not be modeled for the SC with a tert-leucine-derived moiety, but hydrolysis reactions of MPhP-5F-PICA and of those containing a valine-derived moiety followed classic Michaelis-Menten kinetics. In conclusion, drug-drug/drug-food interactions or hCES polymorphisms may prolong the half-life of SC and the current results help to estimate the risk of toxicity in the future after combining them with activity and clinical data.


Assuntos
Canabinoides , Drogas Ilícitas , Amidas , Canabinoides/metabolismo , Canabinoides/toxicidade , Hidrolases de Éster Carboxílico/metabolismo , Ésteres , Humanos , Cinética , Toxicocinética
4.
Drug Test Anal ; 14(8): 1491-1502, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35524160

RESUMO

Novel substances for which none or limited analytical data are available constitute a challenge for police and customs forensic laboratories. The time-consuming process of structural elucidation and acquisition of analytical data has been centralized in the ADEBAR project in Germany, co-funded since 2017 by the EU's Internal Security Fund. The project aims to comprehensively characterize substances relevant for forensic-toxicological casework within the analytical competence network. The analytical datasets are distributed digitally through European and (inter)national channels. Additionally, pharmacological evaluation allows for estimating in vivo potency and potential harm required as scientific evidence for legislative amendments. The ADEBAR project contributes to the availability of analytical data on new substances relevant to the daily work of police and customs laboratories. Since the inception of the ADEBAR project, 549 samples have been registered, and 302 substance reports notified to the EMCDDA, including numerous spectrometric and spectroscopic data. In addition, 3,619 mass spectra have been accumulated in ADEBAR mass spectra databases. A central institution for the structure elucidation and acquisition of valid, high-quality analytical data for police and customs forensic laboratories and forensic medicine institutes is important in the future because there does not seem to be an end to the dynamic of novel NPS appearing on the drug market.


Assuntos
Psicotrópicos , Toxicologia Forense , Alemanha , Espectrometria de Massas , Psicotrópicos/análise , Análise Espectral
5.
Metabolites ; 10(9)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967365

RESUMO

The evaluation of liquid chromatography high-resolution mass spectrometry (LC-HRMS) raw data is a crucial step in untargeted metabolomics studies to minimize false positive findings. A variety of commercial or open source software solutions are available for such data processing. This study aims to compare three different data processing workflows (Compound Discoverer 3.1, XCMS Online combined with MetaboAnalyst 4.0, and a manually programmed tool using R) to investigate LC-HRMS data of an untargeted metabolomics study. Simple but highly standardized datasets for evaluation were prepared by incubating pHLM (pooled human liver microsomes) with the synthetic cannabinoid A-CHMINACA. LC-HRMS analysis was performed using normal- and reversed-phase chromatography followed by full scan MS in positive and negative mode. MS/MS spectra of significant features were subsequently recorded in a separate run. The outcome of each workflow was evaluated by its number of significant features, peak shape quality, and the results of the multivariate statistics. Compound Discoverer as an all-in-one solution is characterized by its ease of use and seems, therefore, suitable for simple and small metabolomic studies. The two open source solutions allowed extensive customization but particularly, in the case of R, made advanced programming skills necessary. Nevertheless, both provided high flexibility and may be suitable for more complex studies and questions.

6.
Front Chem ; 8: 539, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32766204

RESUMO

The new psychoactive substances (NPS) market continues to be very dynamic. A large number of compounds belonging to diverse chemical groups continue to emerge. This makes their detection in biological samples challenging for clinical and forensic toxicologists. Knowledge of the metabolic fate of NPS is crucial for developing comprehensive screening procedures. As human studies are not feasible due to ethical concerns, the current study aimed to compare the NPS' metabolic pattern in incubations with pooled human liver S9 fraction (pHLS9), human liver HepaRG cells, and zebrafish larvae. The latter model was recently shown to be a promising preclinical surrogate for human hepatic metabolism of a synthetic cannabinoid. However, studies concerning other NPS classes are still missing and therefore an amphetamine-based N-methoxybenzyl (NBOMe) compound, a synthetic cathinone, a pyrrolidinophenone analog, a lysergamide, as well as another synthetic cannabinoid were included in the current study. Liquid chromatography coupled to Orbitrap-based high-resolution tandem mass spectrometry was used to analyze metabolic data. Zebrafish larvae were found to produce the highest number of phase I but also phase II metabolites (79 metabolites in total), followed by HepaRG cells (66 metabolites). Incubations with pHLS9 produced the least metabolites (57 metabolites). Furthermore, the involvement of monooxygenases and esterases in the metabolic phase I transformations of 4F-MDMB-BINACA was elucidated using single-enzyme incubations. Several cytochrome P450 (CYP) isozymes were shown to contribute, and CYP3A5 was involved in all CYP-catalyzed reactions, while amide and ester hydrolysis were catalyzed by the human carboxylesterase (hCES) isoforms hCES1b and/or hCES1c. Finally, metabolites were compared to those present in human biosamples if data were available. Overall, the metabolic patterns in HepaRG cells provided the worst overlap with that in human biosamples. Zebrafish larvae experiments agreed best with data found in human plasma and urine analysis. The current study underlines the potential of zebrafish larvae as a tool for elucidating the toxicokinetics of NPS in the future.

7.
Arch Toxicol ; 94(6): 2009-2025, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32249346

RESUMO

The two fentanyl homologs cyclopropanoyl-1-benzyl-4´-fluoro-4-anilinopiperidine (4F-Cy-BAP) and furanoyl-1-benzyl-4-anilinopiperidine (Fu-BAP) have recently been seized as new psychoactive substances (NPS) on the drugs of abuse market. As their toxicokinetic and toxicodynamic characteristics are completely unknown, this study focused on elucidating their in vitro metabolic stability in pooled human liver S9 fraction (pHLS9), their qualitative in vitro (pHLS9), and in vivo (zebrafish larvae) metabolism, and their in vitro isozyme mapping using recombinant expressed isoenzymes. Their maximum-tolerated concentration (MTC) in zebrafish larvae was studied from 0.01 to 100 µM. Their µ-opioid receptor (MOR) activity was analyzed in engineered human embryonic kidney (HEK) 293 T cells. In total, seven phase I and one phase II metabolites of 4F-Cy-BAP and 15 phase I and four phase II metabolites of Fu-BAP were tentatively identified by means of liquid chromatography high-resolution tandem mass spectrometry, with the majority detected in zebrafish larvae. N-Dealkylation, N-deacylation, hydroxylation, and N-oxidation were the most abundant metabolic reactions and the corresponding metabolites are expected to be promising analytical targets for toxicological analysis. Isozyme mapping revealed the main involvement of CYP3A4 in the phase I metabolism of 4F-Cy-BAP and in terms of Fu-BAP additionally CYP2D6. Therefore, drug-drug interactions by CYP3A4 inhibition may cause elevated drug levels and unwanted adverse effects. MTC experiments revealed malformations and changes in the behavior of larvae after exposure to 100 µM Fu-BAP. Both substances were only able to produce a weak activation of MOR and although toxic effects based on MOR activation seem unlikely, activity at other receptors cannot be excluded.


Assuntos
Analgésicos Opioides/toxicidade , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Fentanila/toxicidade , Microssomos Hepáticos/enzimologia , Analgésicos Opioides/farmacocinética , Animais , Fentanila/análogos & derivados , Fentanila/farmacocinética , Células HEK293 , Humanos , Isoenzimas , Dose Máxima Tolerável , Desintoxicação Metabólica Fase I , Desintoxicação Metabólica Fase II , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Especificidade por Substrato , Toxicocinética , Peixe-Zebra/embriologia
8.
J Anal Toxicol ; 44(5): 449-460, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32020187

RESUMO

The growing number of new synthetic opioids (NSO) on the new psychoactive substances (NPS) market bears new challenges in toxicology. As their toxicodynamics and particularly their toxicokinetics are usually unknown, impact on human health is not yet fully understood. Detection of the 2 NSO cyclopentanoyl-fentanyl (CP-F) and tetrahydrofuranoyl-fentanyl (THF-F) was first reported in 2016. Both were involved in several fatal intoxication cases, but no detailed information about their toxicological characteristics is available so far. The main purpose of this study was therefore to investigate the in vitro toxicokinetics and in vivo analytical toxicology of CP-F and THF-F by means of liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS). These studies included metabolic stability, phase I and II metabolism, isozyme mapping, plasma protein binding and detectability in LC-HRMS/MS standard urine screening approaches (SUSA) using rat urine samples. In total, 12 phase I metabolites of CP-F and 13 of THF-F were identified, among them 9 metabolites described for the first time. Overall, N-dealkylations, hydroxylations and dihydroxylations were the main metabolic reactions. The cytochrome P450 (CYP) isozymes mainly involved were CYP2D6 and CYP3A4, leading to elevated drug levels and intoxications in CYP2D6 poor metabolizers. CP-F showed a high plasma protein binding of 99%, which may increase the risk of toxicity by simultaneous intake of other highly bound drugs. Detectability studies showed that neither the parent compounds nor their metabolites were detectable in rat urine using LC-HRMS/MS SUSA. However, a more sophisticated analytical strategy was successfully applied and should be used for analytical confirmation of an intake of CP-F and/or THF-F.


Assuntos
Analgésicos Opioides/análise , Drogas Desenhadas/análise , Toxicocinética , Analgésicos Opioides/toxicidade , Animais , Cromatografia Líquida , Citocromo P-450 CYP2D6 , Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450 , Drogas Desenhadas/toxicidade , Fentanila , Humanos , Masculino , Ligação Proteica , Ratos , Espectrometria de Massas em Tandem , Urinálise
9.
Drug Test Anal ; 12(1): 78-91, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31476105

RESUMO

In June 2018, a 'research chemica'l labeled 'AB-FUB7AICA' was purchased online and analytically identified as 5F-AB-P7AICA, the 7-azaindole analog of 5F-AB-PINACA. Here we present data on structural characterization, suitable urinary consumption markers, and preliminary pharmacokinetic data. Structure characterization was performed by nuclear magnetic resonance spectroscopy, gas chromatography-mass spectrometry, infrared and Raman spectroscopy. Phase I metabolites were generated by applying a pooled human liver microsome assay (pHLM) to confirm the analysis results of authentic urine samples collected after oral self-administration of 2.5 mg 5F-AB-P7AICA. Analyses of pHLM and urine samples were performed by liquid chromatography-time-of-flight mass spectrometry and liquid chromatography-tandem mass spectrometry (LC-MS/MS). An LC-MS/MS method for the quantification of 5F-AB-P7AICA in serum was validated. Ten phase I metabolites were detected in human urine samples and confirmed in vitro. The main metabolites were formed by hydroxylation, amide hydrolysis, and hydrolytic defluorination, though - in contrast with most other synthetic cannabinoids - the parent compound showed the highest signals in most urine samples. The compound detection window was more than 45 hours in serum. The concentration-time profile was best explained by a two-phase pharmacokinetic model. 5F-AB-P7AICA was detected in urine samples until 65 hours post ingestion. Monitoring of metabolite M07, hydroxylated at the alkyl chain, next to parent 5F-AB-P7AICA, is recommended to confirm the uptake of 5F-AB-P7AICA in urinalysis. It seems plausible that the shift of the nitrogen atom from position 2 to 7 (e.g. 5F-AB-PINACA to 5F-AB-P7AICA) leads to a lower metabolic reactivity, which might be of general interest in medicinal chemistry.


Assuntos
Canabinoides/metabolismo , Drogas Ilícitas/metabolismo , Indóis/metabolismo , Microssomos Hepáticos/metabolismo , Adulto , Canabinoides/sangue , Canabinoides/urina , Cromatografia Líquida/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Drogas Ilícitas/sangue , Drogas Ilícitas/urina , Indóis/sangue , Indóis/urina , Masculino , Dados Preliminares , Detecção do Abuso de Substâncias/métodos , Espectrometria de Massas em Tandem/métodos
10.
Drug Test Anal ; 11(9): 1377-1386, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31228224

RESUMO

Synthetic cannabinoids (SCs) remain one of the largest groups of new psychoactive substances (NPS) on the European drug market. Although the number of new derivatives occurring on the market has dropped in the last two years, newly emerging NPS still represent a challenge for laboratories performing forensic drug analysis in biological matrices. The newly emerged SC 4F-MDMB-BINACA has been reported by several law enforcement agencies in Europe and the USA since November 2018. This work aimed at revealing urinary markers to prove uptake of 4F-MDMB-BINACA and differentiate from the use of structurally similar SCs. Phase-I metabolites detected in human urine specimens were confirmed by phase-I metabolites generated in vitro using a pooled human liver microsomes (pHLM) assay. Seized materials and test-purchased "legal high" products were analyzed by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-qToF-MS). Human urine specimens and pHLM assay extracts were measured with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) and confirmed by LC-qToF-MS. In January 2019, the Institute of Legal Medicine in Erlangen (Germany) identified 4F-MDMB-BINACA in three herbal blends. During the same time period, the described SC was identified in a research chemical purchased online. Investigation of phase-I metabolism led to the metabolites M10 (ester hydrolysis) and M11 (ester hydrolysis and dehydrogenation) as reliable urinary markers. Widespread distribution on the German drug market was proven by analysis of urine samples from abstinence control programs and by frequent detection of 4F-MDMB-BINACA in "herbal blends" and "'research chemicals" purchased via the Internet.


Assuntos
Canabinoides/urina , Drogas Ilícitas/urina , Psicotrópicos/urina , Canabinoides/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Drogas Ilícitas/metabolismo , Microssomos Hepáticos/metabolismo , Psicotrópicos/metabolismo , Detecção do Abuso de Substâncias
11.
Beilstein J Org Chem ; 8: 11-7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22423268

RESUMO

A bi-macrocycle with an incorporated isophthalamide substructure was synthesized by double amide formation between an isophthaloyl dichloride and two equivalents of a bis(alkenyloxy)aniline, followed by ring-closing metathesis and hydrogenation. In contrast to many related isophthalamides, the concave host exhibits a better binding for oxides, such as DMSO or pyridine-N-oxide, than for halide anions. A general method for a quick estimation of the strength of binding derived from only a few data points is presented and gives an estimated K(ass) of pyridine-N-oxide of ca. 40 M(-1), NMR titration confirms 25 M(-1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...