Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0298957, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38446841

RESUMO

The lifestyle of spinosaurid dinosaurs has been a topic of lively debate ever since the unveiling of important new skeletal parts for Spinosaurus aegyptiacus in 2014 and 2020. Disparate lifestyles for this taxon have been proposed in the literature; some have argued that it was semiaquatic to varying degrees, hunting fish from the margins of water bodies, or perhaps while wading or swimming on the surface; others suggest that it was a fully aquatic underwater pursuit predator. The various proposals are based on equally disparate lines of evidence. A recent study by Fabbri and coworkers sought to resolve this matter by applying the statistical method of phylogenetic flexible discriminant analysis to femur and rib bone diameters and a bone microanatomy metric called global bone compactness. From their statistical analyses of datasets based on a wide range of extant and extinct taxa, they concluded that two spinosaurid dinosaurs (S. aegyptiacus, Baryonyx walkeri) were fully submerged "subaqueous foragers," whereas a third spinosaurid (Suchomimus tenerensis) remained a terrestrial predator. We performed a thorough reexamination of the datasets, analyses, and methodological assumptions on which those conclusions were based, which reveals substantial problems in each of these areas. In the datasets of exemplar taxa, we found unsupported categorization of taxon lifestyle, inconsistent inclusion and exclusion of taxa, and inappropriate choice of taxa and independent variables. We also explored the effects of uncontrolled sources of variation in estimates of bone compactness that arise from biological factors and measurement error. We found that the ability to draw quantitative conclusions is limited when taxa are represented by single data points with potentially large intrinsic variability. The results of our analysis of the statistical method show that it has low accuracy when applied to these datasets and that the data distributions do not meet fundamental assumptions of the method. These findings not only invalidate the conclusions of the particular analysis of Fabbri et al. but also have important implications for future quantitative uses of bone compactness and discriminant analysis in paleontology.


Assuntos
Dinossauros , Mergulho , Animais , Filogenia , Natação , Água Corporal
2.
J Exp Biol ; 227(5)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38380513

RESUMO

Dolphins have become famous for their ability to perform a wide variety of athletic and acrobatic behaviors including high-speed swimming, maneuverability, porpoising and tail stands. Tail stands are a behavior where part of the body is held vertically above the water's surface, achieved through thrust produced by horizontal tail fluke oscillations. Strong, efficient propulsors are needed to generate the force required to support the dolphin's body weight, exhibiting chordwise and spanwise flexibility throughout the stroke cycle. To determine how thrust production, fluke flexibility and tail stroke kinematics vary with effort, six adult bottlenose dolphins (Tursiops truncatus) were tested at three different levels based on the position of the center of mass (COM) relative to the water's surface: low (COM below surface), medium (COM at surface) and high (COM above surface) effort. Additionally, fluke flexibility was measured as a flex index (FI=chord length/camber length) at four points in the stroke cycle: center stroke up (CU), extreme top of stroke (ET), center stroke down (CD) and extreme bottom of stroke (EB). Video recordings were analyzed to determine the weight supported above the water (thrust production), peak-to-peak amplitude, stroke frequency and FI. Force production increased with low, medium and high efforts, respectively. Stroke frequency also increased with increased effort. Amplitude remained constant with a mean 33.8% of body length. Significant differences were seen in the FI during the stroke cycle. Changes in FI and stroke frequency allowed for increased force production with effort, and the peak-to-peak amplitude was higher compared with that for horizontal swimming.


Assuntos
Golfinho Nariz-de-Garrafa , Trematódeos , Animais , Natação , Gravação em Vídeo , Água
3.
J Exp Biol ; 227(2)2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38149677

RESUMO

Cetaceans are capable of extraordinary locomotor behaviors in both water and air. Whales and dolphins can execute aerial leaps by swimming rapidly to the water surface to achieve an escape velocity. Previous research on spinner dolphins demonstrated the capability of leaping and completing multiple spins around their longitudinal axis with high angular velocities. This prior research suggested the slender body morphology of spinner dolphins together with the shapes and positions of their appendages allowed for rapid spins in the air. To test whether greater moments of inertia reduced spinning performance, videos and biologging data of cetaceans above and below the water surface were obtained. The principal factors affecting the number of aerial spins a cetacean can execute were moment of inertia and use of control surfaces for subsurface corkscrewing. For spinner dolphin, Pacific striped dolphin, bottlenose dolphin, minke whale and humpback whale, each with swim speeds of 6-7 m s-1, our model predicted that the number of aerial spins executable was 7, 2, 2, 0.76 and 1, respectively, which was consistent with observations. These data implied that the rate of subsurface corkscrewing was limited to 14.0, 6.8, 6.2, 2.2 and 0.75 rad s-1 for spinner dolphins, striped dolphins, bottlenose dolphins, minke whales and humpback whales, respectively. In our study, the moment of inertia of the cetaceans spanned a 21,000-fold range. The greater moments of inertia for the last four species produced large torques on control surfaces that limited subsurface corkscrewing motion and aerial maneuvers compared with spinner dolphins.


Assuntos
Golfinho Nariz-de-Garrafa , Jubarte , Stenella , Animais , Natação , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA