Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Clin Genet ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693682

RESUMO

SATB2-associated syndrome (SAS, glass syndrome, OMIM#612313) is a neurodevelopmental autosomal dominant disorder with frequent craniofacial abnormalities including palatal and dental anomalies. To assess the role of Satb2 in craniofacial development, we analyzed mutant mice at different stages of development. Here, we show that Satb2 is broadly expressed in early embryonic mouse development including the mesenchyme of the second and third arches. Satb2-/- mutant mice exhibit microglossia, a shortened lower jaw, smaller trigeminal ganglia, and larger thyroids. We correlate these findings with the detailed clinical phenotype of four individuals with SAS and remarkable craniofacial phenotypes with one requiring mandibular distraction in childhood. We conclude that the mouse and patient data presented support less well-described phenotypic aspects of SAS including mandibular morphology and thyroid anatomical/functional issues.

2.
Am J Med Genet A ; 194(2): 203-210, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37786328

RESUMO

Alterations in SATB2 result in SATB2-associated syndrome (SAS; Glass syndrome, OMIM 612313), an autosomal dominant multisystemic disorder predominantly characterized by developmental delay, craniofacial anomalies, and growth retardation. The bone phenotype of SAS has been less explored until recently and includes a variety of skeletal deformities, increased risk of low bone mineral density (BMD) with a propensity to fractures, and other biochemical abnormalities that suggest elevated bone turnover. We present the results of ongoing surveillance of bone health from 32 individuals (47% females, 3-18 years) with molecularly-confirmed SAS evaluated at a multidisciplinary clinic. Five individuals (5/32, 16%) were documented to have BMD Z-scores by DXA scans of -2.0 SD or lower and 7 more (7/32, 22%) had Z-scores between -1 and - 2 SD at the lumbar spine or the total hip. Alkaline phosphatase levels were found to be elevated in 19 individuals (19/30, 63%) and determined to correspond to bone-specific alkaline phosphatase elevations when measured (11/11, 100%). C-telopeptide levels were found to be elevated when adjusted by age and gender in 6 individuals (6/14, 43%). Additionally, the two individuals who underwent bone cross-sectional geometry evaluation by peripheral quantitative computed tomography were documented to have low cortical bone density for age and sex despite concurrent DXA scans that did not have this level of decreased density. While we could not identify particular biochemical abnormalities that predicted low BMD, the frequent elevations in markers of bone formation and resorption further confirmed the increased bone turnover in SAS. Based on our results and other recently published studies, we propose surveillance guidelines for the skeletal phenotype of SAS.


Assuntos
Doenças Ósseas Metabólicas , Proteínas de Ligação à Região de Interação com a Matriz , Feminino , Humanos , Masculino , Densidade Óssea/genética , Fosfatase Alcalina , Estudos Prospectivos , Osso e Ossos/diagnóstico por imagem , Absorciometria de Fóton/métodos , Síndrome , Fatores de Transcrição/genética , Proteínas de Ligação à Região de Interação com a Matriz/genética
3.
Front Cell Dev Biol ; 11: 1186526, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37287454

RESUMO

Introduction: The pharyngeal arches are transient developmental structures that, in vertebrates, give rise to tissues of the head and neck. A critical process underlying the specification of distinct arch derivatives is segmentation of the arches along the anterior-posterior axis. Formation of ectodermal-endodermal interfaces is a key mediator of this process, and although it is essential, mechanisms regulating the establishment of these interfaces vary between pouches and between taxa. Methods: Here, we focus on the patterning and morphogenesis of epithelia associated with the first pharyngeal arch, the first pharyngeal pouch (pp1) and the first pharyngeal cleft (pc1), and the role of Fgf8 dosage in these processes in the mouse model system. Results: We find that severe reductions of Fgf8 levels disrupt both pp1 and pc1 development. Notably, out-pocketing of pp1 is largely robust to Fgf8 reductions, however, pp1 extension along the proximal-distal axis fails when Fgf8 is low. Our data indicate that Fgf8 is required for specification of regional identity in both pp1 and pc1, for localized changes in cell polarity, and for elongation and extension of both pp1 and pc1. Discussion: Based on Fgf8-mediated changes in tissue relationships between pp1 and pc1, we hypothesize that extension of pp1 requires physical interaction with pc1. Overall, our data indicate a critical role for the lateral surface ectoderm in segmentation of the first pharyngeal arch that has previously been under-appreciated.

4.
bioRxiv ; 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36993764

RESUMO

The pharyngeal arches are transient developmental structures that, in vertebrates, give rise to tissues of the head and neck. A critical process underlying the specification of distinct arch derivatives is segmentation of the arches along the anterior-posterior axis. Out-pocketing of the pharyngeal endoderm between the arches is a key mediator of this process, and although it is essential, mechanisms regulating out-pocketing vary between pouches and between taxa. Here, we focus on the patterning and morphogenesis of epithelia associated with the first pharyngeal arch, the first pharyngeal pouch (pp1) and the first pharyngeal cleft (pc1), and the role of Fgf8 dosage in these processes. We find that severe reductions of Fgf8 levels disrupt both pp1 and pc1 development. Notably, out-pocketing of pp1 is largely robust to Fgf8 reductions, however, pp1 extension along the proximal-distal axis fails when Fgf8 is low. Our data indicate that extension of pp1 requires physical interaction with pc1, and that multiple aspects of pc1 morphogenesis require Fgf8 . In particular, Fgf8 is required for specification of regional identity in both pp1 and pc1, for localized changes in cell polarity, and for elongation and extension of both pp1 and pc1. Overall, our data indicate a critical role for the lateral surface ectoderm in segmentation of the first pharyngeal arch that has previously been under-appreciated.

5.
Dev Dyn ; 251(10): 1711-1727, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35618654

RESUMO

BACKGROUND: Asymmetries in craniofacial anomalies are commonly observed. In the facial skeleton, the left side is more commonly and/or severely affected than the right. Such asymmetries complicate treatment options. Mechanisms underlying variation in disease severity between individuals as well as within individuals (asymmetries) are still relatively unknown. RESULTS: Developmental reductions in fibroblast growth factor 8 (Fgf8) have a dosage dependent effect on jaw size, shape, and symmetry. Further, Fgf8 mutants have directionally asymmetric jaws with the left side being more affected than the right. Defects in lower jaw development begin with disruption to Meckel's cartilage, which is discontinuous. All skeletal elements associated with the proximal condensation are dysmorphic, exemplified by a malformed and misoriented malleus. At later stages, Fgf8 mutants exhibit syngnathia, which falls into two broad categories: bony fusion of the maxillary and mandibular alveolar ridges and zygomatico-mandibular fusion. All of these morphological defects exhibit both inter- and intra-specimen variation. CONCLUSIONS: We hypothesize that these asymmetries are linked to heart development resulting in higher levels of Fgf8 on the right side of the face, which may buffer the right side to developmental perturbations. This mouse model may facilitate future investigations of mechanisms underlying human syngnathia and facial asymmetry.


Assuntos
Região Branquial , Coração , Animais , Fator 8 de Crescimento de Fibroblasto/genética , Humanos , Anormalidades Maxilomandibulares , Maxila , Camundongos , Anormalidades da Boca
6.
Hum Mol Genet ; 30(9): 739-757, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33601405

RESUMO

EFTUD2 is mutated in patients with mandibulofacial dysostosis with microcephaly (MFDM). We generated a mutant mouse line with conditional mutation in Eftud2 and used Wnt1-Cre2 to delete it in neural crest cells. Homozygous deletion of Eftud2 causes brain and craniofacial malformations, affecting the same precursors as in MFDM patients. RNAseq analysis of embryonic heads revealed a significant increase in exon skipping and increased levels of an alternatively spliced Mdm2 transcript lacking exon 3. Exon skipping in Mdm2 was also increased in O9-1 mouse neural crest cells after siRNA knock-down of Eftud2 and in MFDM patient cells. Moreover, we found increased nuclear P53, higher expression of P53-target genes and increased cell death. Finally, overactivation of the P53 pathway in Eftud2 knockdown cells was attenuated by overexpression of non-spliced Mdm2, and craniofacial development was improved when Eftud2-mutant embryos were treated with Pifithrin-α, an inhibitor of P53. Thus, our work indicates that the P53-pathway can be targeted to prevent craniofacial abnormalities and shows a previously unknown role for alternative splicing of Mdm2 in the etiology of MFDM.


Assuntos
Ribonucleoproteína Nuclear Pequena U5 , Proteína Supressora de Tumor p53 , Animais , Homozigoto , Humanos , Camundongos , Mutação , Fatores de Alongamento de Peptídeos/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Ribonucleoproteína Nuclear Pequena U5/genética , Deleção de Sequência , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
7.
Clin Genet ; 99(4): 547-557, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33381861

RESUMO

SATB2-Associated syndrome (SAS) is an autosomal dominant, multisystemic, neurodevelopmental disorder due to alterations in SATB2 at 2q33.1. A limited number of individuals with 2q33.1 contiguous deletions encompassing SATB2 (ΔSAS) have been described in the literature. We describe 17 additional individuals with ΔSAS, review the phenotype of 33 previously published individuals with 2q33.1 deletions (n = 50, mean age = 8.5 ± 7.8 years), and provide a comprehensive comparison to individuals with other molecular mechanisms that result in SAS (non-ΔSAS). Individuals in the ΔSAS group were often underweight for age (20/41 = 49%) with a progressive decline in weight (95% CI = -2.3 to -1.1, p < 0.0001) and height (95% CI = -2.3 to -1.0, p < 0.0001) Z-score means from birth to last available measurement. ΔSAS individuals were often noted to have a broad spectrum of facial dysmorphism. A composite image of ΔSAS individuals generated by automated image analysis was distinct as compared to matched controls and non-ΔSAS individuals. We also present additional genotype-phenotype correlations for individuals in the ΔSAS group such as an increased risk for aortic root/ascending aorta dilation and primary pulmonary hypertension for those individuals with contiguous gene deletions that include COL3A1/COL5A2 and BMPR2, respectively. Based on these findings, we provide additional care recommendations for individuals with ΔSAS variants.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 2/genética , Proteínas de Ligação à Região de Interação com a Matriz/deficiência , Fatores de Transcrição/deficiência , Adulto , Criança , Pré-Escolar , Cromossomos Humanos Par 2/ultraestrutura , Colágeno Tipo III/deficiência , Colágeno Tipo III/genética , Colágeno Tipo V/deficiência , Colágeno Tipo V/genética , Nanismo/genética , Face/anormalidades , Feminino , Estudos de Associação Genética , Idade Gestacional , Humanos , Hipertensão Pulmonar/genética , Lactente , Masculino , Proteínas de Ligação à Região de Interação com a Matriz/genética , Microcefalia/genética , Fenótipo , Magreza/genética , Fatores de Transcrição/genética
8.
Pediatr Neurol ; 112: 94-100, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32446642

RESUMO

BACKGROUND: Seizures are an under-reported feature of the SATB2-associated syndrome phenotype. We describe the electroencephalographic findings and seizure semiology and treatment in a population of individuals with SATB2-associated syndrome. METHODS: We performed a retrospective review of 101 individuals with SATB2-associated syndrome who were reported to have had a previous electroencephalographic study to identify those who had at least one reported abnormal result. For completeness, a supplemental survey was distributed to the caregivers and input from the treating neurologist was obtained whenever possible. RESULTS: Forty-one subjects were identified as having at least one prior abnormal electroencephalography. Thirty-eight individuals (93%) had epileptiform discharges, 28 (74%) with central localization. Sleep stages were included as part of the electroencephalographies performed in 31 individuals (76%), and epileptiform activity was recorded during sleep in all instances (100%). Definite clinical seizures were diagnosed in 17 individuals (42%) with a mean age of onset of 3.2 years (four months to six years), and focal seizures were the most common type of seizure observed (42%). Six subjects with definite clinical seizures needed polytherapy (35%). Delayed myelination and/or abnormal white matter hyperintensities were seen on neuroimaging in 19 individuals (61%). CONCLUSIONS: Epileptiform abnormalities are commonly seen in individuals with SATB2-associated syndrome. A baseline electroencephalography that preferably includes sleep stages is recommended during the initial evaluation of all individuals with SATB2-associated syndrome, regardless of clinical suspicion of epilepsy.


Assuntos
Epilepsia , Doenças Genéticas Inatas , Proteínas de Ligação à Região de Interação com a Matriz/genética , Malformações do Sistema Nervoso , Transtornos do Sono-Vigília , Fatores de Transcrição/genética , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , Eletroencefalografia , Epilepsia/diagnóstico , Epilepsia/etiologia , Epilepsia/genética , Epilepsia/fisiopatologia , Feminino , Doenças Genéticas Inatas/complicações , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/fisiopatologia , Humanos , Lactente , Masculino , Malformações do Sistema Nervoso/diagnóstico , Malformações do Sistema Nervoso/etiologia , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/fisiopatologia , Estudos Retrospectivos , Fases do Sono/fisiologia , Transtornos do Sono-Vigília/diagnóstico , Transtornos do Sono-Vigília/etiologia , Transtornos do Sono-Vigília/genética , Transtornos do Sono-Vigília/fisiopatologia , Síndrome , Adulto Jovem
9.
Bone ; 127: 488-498, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31325654

RESUMO

Special AT-rich sequence binding protein 2 (Satb2) is a matrix attachment region (MAR) binding protein. Satb2 impacts skeletal development by regulating gene transcription required for osteogenic differentiation. Although its role as a high-order transcription factor is well supported, other roles for Satb2 in skeletal development remain unclear. In particular, the impact of dosage sensitivity (heterozygous mutations) and variance on phenotypic severity is still not well understood. To further investigate molecular and cellular mechanisms of Satb2-mediated skeletal defects, we used the CRISPR/Cas9 system to generate Satb2 mutations in MC3T3-E1 cells. Our data suggest that, in addition to its role in differentiation, Satb2 regulates progenitor proliferation. We also find that mutations in Satb2 cause chromatin defects including nuclear blebbing and donut-shaped nuclei. These defects may contribute to a slight increase in apoptosis in mutant cells, but apoptosis is insufficient to explain the proliferation defects. Satb2 expression exhibits population-level variation and is most highly expressed from late G1 to late G2. Based on these data, we hypothesize that Satb2 may regulate proliferation through two separate mechanisms. First, Satb2 may regulate the expression of genes necessary for cell cycle progression in pre-osteoblasts. Second, similar to other MAR-binding proteins, Satb2 may participate in DNA replication. We also hypothesize that variation in the severity or penetrance of Satb2-mediated proliferation defects is due to stochastic variation in Satb2 binding to DNA, which may be buffered in some genetic backgrounds. Further elucidation of the role of Satb2 in proliferation has potential impacts on our understanding of both skeletal defects and cancer.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/genética , Osteoblastos/citologia , Osteoblastos/metabolismo , Fatores de Transcrição/genética , Animais , Sistemas CRISPR-Cas/genética , Ciclo Celular/genética , Diferenciação Celular/genética , Linhagem Celular , Forma do Núcleo Celular , Proliferação de Células , Regulação da Expressão Gênica , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Camundongos , Modelos Biológicos , Mutação/genética , Osteogênese/genética , Fatores de Transcrição/metabolismo
10.
Hum Mutat ; 40(8): 1013-1029, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31021519

RESUMO

SATB2-associated syndrome (SAS) is an autosomal dominant neurodevelopmental disorder caused by alterations in the SATB2 gene. Here we present a review of published pathogenic variants in the SATB2 gene to date and report 38 novel alterations found in 57 additional previously unreported individuals. Overall, we present a compilation of 120 unique variants identified in 155 unrelated families ranging from single nucleotide coding variants to genomic rearrangements distributed throughout the entire coding region of SATB2. Single nucleotide variants predicted to result in the occurrence of a premature stop codon were the most commonly seen (51/120 = 42.5%) followed by missense variants (31/120 = 25.8%). We review the rather limited functional characterization of pathogenic variants and discuss current understanding of the consequences of the different molecular alterations. We present an expansive phenotypic review along with novel genotype-phenotype correlations. Lastly, we discuss current knowledge of animal models and present future prospects. This review should help provide better guidance for the care of individuals diagnosed with SAS.


Assuntos
Proteínas de Ligação à Região de Interação com a Matriz/genética , Mutação , Transtornos do Neurodesenvolvimento/genética , Fatores de Transcrição/genética , Adolescente , Animais , Criança , Pré-Escolar , Códon de Terminação , Modelos Animais de Doenças , Feminino , Rearranjo Gênico , Estudos de Associação Genética , Humanos , Masculino , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único
11.
Semin Cell Dev Biol ; 91: 13-22, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-29248471

RESUMO

The skull is a vertebrate novelty. Morphological adaptations of the skull are associated with major evolutionary transitions, including the shift to a predatory lifestyle and the ability to masticate while breathing. These adaptations include the chondrocranium, dermatocranium, articulated jaws, primary and secondary palates, internal choanae, the middle ear, and temporomandibular joint. The incredible adaptive diversity of the vertebrate skull indicates an underlying bauplan that promotes evolvability. Comparative studies in craniofacial development suggest that the craniofacial bauplan includes three secondary organizers, two that are bilaterally placed at the Hinge of the developing jaw, and one situated in the midline of the developing face (the FEZ). These organizers regulate tissue interactions between the cranial neural crest, the neuroepithelium, and facial and pharyngeal epithelia that regulate the development and evolvability of the craniofacial skeleton.


Assuntos
Evolução Biológica , Ossos Faciais/embriologia , Crista Neural/embriologia , Crânio/embriologia , Animais , Padronização Corporal/genética , Ossos Faciais/anatomia & histologia , Ossos Faciais/metabolismo , Peixes/anatomia & histologia , Peixes/embriologia , Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento , Crista Neural/anatomia & histologia , Crista Neural/metabolismo , Crânio/anatomia & histologia , Crânio/metabolismo
12.
Semin Cell Dev Biol ; 88: 67-79, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29782925

RESUMO

Canalization, or robustness to genetic or environmental perturbations, is fundamental to complex organisms. While there is strong evidence for canalization as an evolved property that varies among genotypes, the developmental and genetic mechanisms that produce this phenomenon are very poorly understood. For evolutionary biology, understanding how canalization arises is important because, by modulating the phenotypic variation that arises in response to genetic differences, canalization is a determinant of evolvability. For genetics of disease in humans and for economically important traits in agriculture, this subject is important because canalization is a potentially significant cause of missing heritability that confounds genomic prediction of phenotypes. We review the major lines of thought on the developmental-genetic basis for canalization. These fall into two groups. One proposes specific evolved molecular mechanisms while the other deals with robustness or canalization as a more general feature of development. These explanations for canalization are not mutually exclusive and they overlap in several ways. General explanations for canalization are more likely to involve emergent features of development than specific molecular mechanisms. Disentangling these explanations is also complicated by differences in perspectives between genetics and developmental biology. Understanding canalization at a mechanistic level will require conceptual and methodological approaches that integrate quantitative genetics and developmental biology.


Assuntos
Evolução Biológica , Epigênese Genética , Epistasia Genética , Estudos de Associação Genética , Genótipo , Fenótipo , Adaptação Fisiológica/genética , Animais , Biologia do Desenvolvimento/métodos , Redes Reguladoras de Genes , Interação Gene-Ambiente , Técnicas Genéticas , Variação Genética , Genética , Humanos , Plantas/genética , Característica Quantitativa Herdável , Seleção Genética
13.
Genesis ; 57(1): e23249, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30207415

RESUMO

Variation in development mediates phenotypic differences observed in evolution and disease. Although the mechanisms underlying phenotypic variation are still largely unknown, recent research suggests that variation in developmental processes may play a key role. Developmental processes mediate genotype-phenotype relationships and consequently play an important role regulating phenotypes. In this review, we provide an example of how shared and interacting developmental processes may explain convergence of phenotypes in spliceosomopathies and ribosomopathies. These data also suggest a shared pathway to disease treatment. We then discuss three major mechanisms that contribute to variation in developmental processes: genetic background (gene-gene interactions), gene-environment interactions, and developmental stochasticity. Finally, we comment on evolutionary alterations to developmental processes, and the evolution of disease buffering mechanisms.


Assuntos
Desenvolvimento Ósseo/genética , Disostose Craniofacial/genética , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Animais , Disostose Craniofacial/metabolismo , Humanos , Splicing de RNA , Ribossomos/genética , Crânio/embriologia , Crânio/metabolismo
14.
Nat Commun ; 8(1): 1970, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29213092

RESUMO

Robustness to perturbation is a fundamental feature of complex organisms. Mutations are the raw material for evolution, yet robustness to their effects is required for species survival. The mechanisms that produce robustness are poorly understood. Nonlinearities are a ubiquitous feature of development that may link variation in development to phenotypic robustness. Here, we manipulate the gene dosage of a signaling molecule, Fgf8, a critical regulator of vertebrate development. We demonstrate that variation in Fgf8 expression has a nonlinear relationship to phenotypic variation, predicting levels of robustness among genotypes. Differences in robustness are not due to gene expression variance or dysregulation, but emerge from the nonlinearity of the genotype-phenotype curve. In this instance, embedded features of development explain robustness differences. How such features vary in natural populations and relate to genetic variation are key questions for unraveling the origin and evolvability of this feature of organismal development.


Assuntos
Evolução Molecular , Variação Genética , Modelos Genéticos , Fenótipo , Animais , Evolução Biológica , Simulação por Computador , Fator 8 de Crescimento de Fibroblasto/genética , Dosagem de Genes , Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genótipo , Masculino , Camundongos , Mutação , Dinâmica não Linear , RNA/genética
15.
Am J Med Genet A ; 173(4): 985-1006, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28168819

RESUMO

The Society for Craniofacial Genetics and Developmental Biology (SCGDB) aims to promote education, research, and communication, about normal and abnormal development of the tissues and organs of the head. Membership of the SCGDB is broad and diverse-including clinicians, orthodontists, scientists, and academics-but with all members sharing an interest in craniofacial biology. Each year, the SCGDB hosts a meeting where members can share their latest research, exchange ideas and resources, and build on or establish new collaborations. © 2017 Wiley Periodicals, Inc.


Assuntos
Anormalidades Craniofaciais/genética , Biologia do Desenvolvimento/educação , Regulação da Expressão Gênica no Desenvolvimento , Evolução Biológica , Boston , Anormalidades Craniofaciais/patologia , Anormalidades Craniofaciais/terapia , Biologia do Desenvolvimento/história , Biologia do Desenvolvimento/tendências , História do Século XXI , Humanos , Defesa do Paciente/educação
16.
Am J Med Genet A ; 173(2): 327-337, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27774744

RESUMO

The SATB2-associated syndrome is a recently described syndrome characterized by developmental delay/intellectual disability with absent or limited speech development, craniofacial abnormalities, behavioral problems, dysmorphic features, and palatal and dental abnormalities. Alterations of the SATB2 gene can result from a variety of different mechanisms that include contiguous deletions, intragenic deletions and duplications, translocations with secondary gene disruption, and point mutations. The multisystemic nature of this syndrome demands a multisystemic approach and we propose evaluation and management guidelines. The SATB2-associated syndrome registry has now been started and that will allow gathering further clinical information and refining the provided surveillance recommendations. © 2016 The Authors. American Journal of Medical Genetics Part A Published by Wiley Periodicals, Inc.


Assuntos
Estudos de Associação Genética , Proteínas de Ligação à Região de Interação com a Matriz/genética , Fenótipo , Fatores de Transcrição/genética , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Animais , Deleção Cromossômica , Cromossomos Humanos Par 2 , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Estudos de Associação Genética/métodos , Testes Genéticos , Genômica/métodos , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Proteínas de Ligação à Região de Interação com a Matriz/química , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Mutação , Vigilância da População , Síndrome , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
17.
Dev Biol ; 415(2): 188-197, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-26724698

RESUMO

Craniofacial disease phenotypes exhibit significant variation in penetrance and severity. Although many genetic contributions to phenotypic variation have been identified, genotype-phenotype correlations remain imprecise. Recent work in evolutionary developmental biology has exposed intriguing developmental mechanisms that potentially explain incongruities in genotype-phenotype relationships. This review focuses on two observations from work in comparative and experimental animal model systems that highlight how development structures variation. First, multiple genetic inputs converge on relatively few developmental processes. Investigation of when and how variation in developmental processes occurs may therefore help predict potential genetic interactions and phenotypic outcomes. Second, genetic mutation is typically associated with an increase in phenotypic variance. Several models outlining developmental mechanisms underlying mutational increases in phenotypic variance are discussed using Satb2-mediated variation in jaw size as an example. These data highlight development as a critical mediator of genotype-phenotype correlations. Future research in evolutionary developmental biology focusing on tissue-level processes may help elucidate the "black box" between genotype and phenotype, potentially leading to novel treatment, earlier diagnoses, and better clinical consultations for individuals affected by craniofacial anomalies.


Assuntos
Anormalidades Craniofaciais/genética , Estudos de Associação Genética , Desenvolvimento Maxilofacial/fisiologia , Animais , Evolução Biológica , Evolução Molecular , Face/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Variação Genética , Cabeça/embriologia , Humanos , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Ligação à Região de Interação com a Matriz/fisiologia , Desenvolvimento Maxilofacial/genética , Mesoderma/citologia , Mesoderma/embriologia , Morfogênese , Mutação , Crista Neural/citologia , Crista Neural/embriologia , Crânio/embriologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Vertebrados/embriologia , Vertebrados/genética
18.
Cell Rep ; 12(5): 760-73, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26212322

RESUMO

The evolutionarily conserved miR-302 family of microRNAs is expressed during early mammalian embryonic development. Here, we report that deletion of miR-302a-d in mice results in a fully penetrant late embryonic lethal phenotype. Knockout embryos have an anterior neural tube closure defect associated with a thickened neuroepithelium. The neuroepithelium shows increased progenitor proliferation, decreased cell death, and precocious neuronal differentiation. mRNA profiling at multiple time points during neurulation uncovers a complex pattern of changing targets over time. Overexpression of one of these targets, Fgf15, in the neuroepithelium of the chick embryo induces precocious neuronal differentiation. Compound mutants between mir-302 and the related mir-290 locus have a synthetic lethal phenotype prior to neurulation. Our results show that mir-302 helps regulate neurulation by suppressing neural progenitor expansion and precocious differentiation. Furthermore, these results uncover redundant roles for mir-290 and mir-302 early in development.


Assuntos
Diferenciação Celular/fisiologia , Embrião de Mamíferos/embriologia , MicroRNAs/biossíntese , Células-Tronco Neurais/metabolismo , Tubo Neural/embriologia , Animais , Embrião de Galinha , Embrião de Mamíferos/citologia , Camundongos , MicroRNAs/genética , Células-Tronco Neurais/citologia , Tubo Neural/citologia
19.
Dis Model Mech ; 8(1): 31-43, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25381013

RESUMO

Failure of facial prominence fusion causes cleft lip and palate (CL/P), a common human birth defect. Several potential mechanisms can be envisioned that would result in CL/P, including failure of prominence growth and/or alignment as well as a failure of fusion of the juxtaposed epithelial seams. Here, using geometric morphometrics, we analyzed facial outgrowth and shape change over time in a novel mouse model exhibiting fully penetrant bilateral CL/P. This robust model is based upon mutations in Tfap2a, the gene encoding transcription factor AP-2α, which has been implicated in both syndromic and non-syndromic human CL/P. Our findings indicate that aberrant morphology and subsequent misalignment of the facial prominences underlies the inability of the mutant prominences to fuse. Exencephaly also occured in some of the Tfap2a mutants and we observed additional morphometric differences that indicate an influence of neural tube closure defects on facial shape. Molecular analysis of the CL/P model indicates that Fgf signaling is misregulated in the face, and that reducing Fgf8 gene dosage can attenuate the clefting pathology by generating compensatory changes. Furthermore, mutations in either Tfap2a or Fgf8 increase variance in facial shape, but the combination of these mutations restores variance to normal levels. The alterations in variance provide a potential mechanistic link between clefting and the evolution and diversity of facial morphology. Overall, our findings suggest that CL/P can result from small gene-expression changes that alter the shape of the facial prominences and uncouple their coordinated morphogenesis, which is necessary for normal fusion.


Assuntos
Fenda Labial/genética , Fissura Palatina/genética , Fator 8 de Crescimento de Fibroblasto/genética , Dosagem de Genes , Fator de Transcrição AP-2/genética , Alelos , Animais , Apoptose , Osso e Ossos/patologia , Cartilagem/patologia , Proliferação de Células , Modelos Animais de Doenças , Face/patologia , Feminino , Fator 8 de Crescimento de Fibroblasto/metabolismo , Perfilação da Expressão Gênica , Genótipo , Humanos , Hibridização In Situ , Camundongos , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Transdução de Sinais , Fator de Transcrição AP-2/metabolismo
20.
J Hum Evol ; 77: 143-54, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25449953

RESUMO

Phylogenetic analyses require evolutionarily independent characters, but there is no consensus, nor has there been a clear methodology presented on how to define character independence in a phylogenetic context, particularly within a complex morphological structure such as the skull. Following from studies of craniofacial development, we hypothesize that the premaxilla is an independent evolutionary module with two integrated characters that have traditionally been treated as independent. We test this hypothesis on a large sample of primate skulls and find evidence supporting the premaxilla as an independent module within the larger module of the palate. Additionally, our data indicate that the convexity of the nasoalveolar clivus and the contour of the alveolus are integrated within the premaxilla. We show that the palate itself is composed of two distinct modules: the FNP-derived premaxillae and the mxBA1-derived maxillae and palatines. Application of our data to early African hominin facial morphology suggests that at least three separate transitions contributed to robust facial morphology: 1) an increase in the size of the post-canine dentition housed within the maxillae and palatines, 2) modification of the premaxilla generating a concave clivus and reduced incisor alveolus, and 3) modification of the zygomatic, shifting the zygomatic root and lateral face anteriorly. These data lend support to the monophyly of Paranthropus boisei and Paranthropus robustus, and provide mounting evidence in favor of a Paranthropus clade. This study also highlights the utility of applying developmental evidence to studies of morphological evolution.


Assuntos
Evolução Biológica , Face/anatomia & histologia , Maxila/anatomia & histologia , Crânio/anatomia & histologia , Animais , Fósseis , Hominidae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...