Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Water Environ Res ; 95(12): e10949, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38056599

RESUMO

EPANET and its commercial derivatives are the most widely-used software packages for modeling free chlorine and its by-products in drinking water distribution systems. Yet, they are not sufficiently accurate, general, or efficient for deriving optimal chlorine dosing strategies at different seasonal temperatures. To overcome EPANET's limitations, an integrated set of rigorously validated multispecies process models are proposed for application within the EPANET-MSX environment. An executable (command-line) version of these MSX models is supplied for use either within the MSX environment or embedded in commercial versions of MSX. A new general method was devised to obtain output of any intermediate coefficient or variable involved in the simulation. This overcomes MSX's limited output options. When the debugged models were applied to a real distribution system, the optimal chlorine dose for summer required almost double the chlorine dose needed in winter. A lower initial dose combined with a downstream booster dose required less chlorine in total. Formal optimization techniques are needed to efficiently obtain similar strategies in more complex systems. PRACTITIONER POINTS: EPANET water quality models are not accurate or general enough for deriving optimal chlorine dosing strategies in distribution systems. Integrated EPNET-MSX models of chlorine reactions in bulk water and at pipe walls, and associated by-product formation, overcome EPANET's limitations. To verify model authenticity, a general technique was developed to obtain values of coefficients and variables within an EPANET-MSX simulation. EPANET-MSX command lines implementing these integrated EPANET-MSX models are presented with verified results for optimal initial and booster dosing strategies. Optimal summer dosing in a real system of rough pipes was almost double that required in winter.


Assuntos
Água Potável , Purificação da Água , Cloro , Abastecimento de Água , Qualidade da Água , Purificação da Água/métodos
2.
Proc Natl Acad Sci U S A ; 120(35): e2302800120, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37607225

RESUMO

The adiabatic elastocaloric effect measures the temperature change of a given system with strain and provides a thermodynamic probe of the entropic landscape in the temperature-strain space. Here, we demonstrate that the DC bias strain-dependence of AC elastocaloric effect allows decomposition of the latter into symmetric (rotation-symmetry-preserving) and antisymmetric (rotation-symmetry-breaking) strain channels, using a tetragonal [Formula: see text]-electron intermetallic DyB[Formula: see text]C[Formula: see text]-whose antiferroquadrupolar order breaks local fourfold rotational symmetries while globally remaining tetragonal-as a showcase example. We capture the strain evolution of its quadrupolar and magnetic phase transitions using both singularities in the elastocaloric coefficient and its jumps at the transitions, and the latter we show follows a modified Ehrenfest relation. We find that antisymmetric strain couples to the underlying order parameter in a biquadratic (linear-quadratic) manner in the antiferroquadrupolar (canted antiferromagnetic) phase, which are attributed to a preserved (broken) global tetragonal symmetry, respectively. The broken tetragonal symmetry in the magnetic phase is further evidenced by elastocaloric strain-hysteresis and optical birefringence. Additionally, within the staggered quadrupolar order, the observed elastocaloric response reflects a quadratic increase of entropy with antisymmetric strain, analogous to the role magnetic field plays for Ising antiferromagnetic orders by promoting pseudospin flips. Our results demonstrate AC elastocaloric effect as a compact and incisive thermodynamic probe into the coupling between electronic degrees of freedom and strain in free energy, which holds the potential for investigating and understanding the symmetry of a wide variety of ordered phases in broader classes of quantum materials.

3.
Sci Adv ; 9(20): eadf6655, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37196089

RESUMO

The search for superconductivity in infinite-layer nickelates was motivated by analogy to the cuprates, and this perspective has framed much of the initial consideration of this material. However, a growing number of studies have highlighted the involvement of rare-earth orbitals; in that context, the consequences of varying the rare-earth element in the superconducting nickelates have been much debated. Here, we show notable differences in the magnitude and anisotropy of the superconducting upper critical field across the La-, Pr-, and Nd-nickelates. These distinctions originate from the 4f electron characteristics of the rare-earth ions in the lattice: They are absent for La3+, nonmagnetic for the Pr3+ singlet ground state, and magnetic for the Nd3+ Kramer's doublet. The unique polar and azimuthal angle-dependent magnetoresistance found in the Nd-nickelates can be understood to arise from the magnetic contribution of the Nd3+ 4f moments. Such robust and tunable superconductivity suggests potential in future high-field applications.

4.
Sci Total Environ ; 857(Pt 1): 159267, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36208766

RESUMO

With increased understanding of the differences in toxicity between species of haloacetic acids (HAAs) and the possibility of more stringent regulations, the ability to predict individual HAA species formation is important. Nine different haloacetic acids are regulated and their total concentration is referred to as HAA9. A mathematical model to predict concentrations of HAA species was proposed and tested using independent data sets. The amount of HAA9 formed per unit amount of chlorine consumed (µg-HAA9/mg-consumed chlorine) remained constant throughout the reaction times in each sample. Similarly, the fraction of a given HAA species largely remained constant during most of the reaction time. Thus, each HAA species was assumed to have its own yield with respect to consumed chlorine in a given water sample. The parallel second-order (2R) model describing chlorine decay kinetics was then extended to predict HAA species formation kinetics. The combined chlorine and HAA species model closely predicts all tested HAA species and its sum with standard error ≤ 5 µg/L. Within the tested waters having Cl2/N mass ratio ≥ 10.7 (g-Cl2/g-N), ammonia did not impact the mass yield. The mass yield of each HAA species can be calculated from three measurements (e.g. at 0, 4 and 24 h) of HAA species and chlorine. Once the yield is known, HAA species concentrations could be predicted for up to 120 h with only chlorine measurements. The model extends the previous work of predicting the trihalomethane species formation kinetics to HAA species formation kinetics. Further research is needed to understand how the yield varies with source water quality, treatment and in distribution systems.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Cloro , Purificação da Água/métodos , Trialometanos/análise , Acetatos , Cloretos , Abastecimento de Água , Poluentes Químicos da Água/análise , Desinfecção/métodos
5.
Proc Natl Acad Sci U S A ; 119(28): e2119942119, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35787036

RESUMO

We report results of low-temperature heat-capacity, magnetocaloric-effect, and neutron-diffraction measurements of TmVO4, an insulator that undergoes a continuous ferroquadrupolar phase transition associated with local partially filled 4f orbitals of the thulium (Tm[Formula: see text]) ions. The ferroquadrupolar transition, a realization of Ising nematicity, can be tuned to a quantum critical point by using a magnetic field oriented along the c axis of the tetragonal crystal lattice, which acts as an effective transverse field for the Ising-nematic order. In small magnetic fields, the thermal phase transition can be well described by using a semiclassical mean-field treatment of the transverse-field Ising model. However, in higher magnetic fields, closer to the field-tuned quantum phase transition, subtle deviations from this semiclassical behavior are observed, which are consistent with expectations of quantum fluctuations. Although the phase transition is driven by the local 4f degrees of freedom, the crystal lattice still plays a crucial role, both in terms of mediating the interactions between the local quadrupoles and in determining the critical scaling exponents, even though the phase transition itself can be described via mean field. In particular, bilinear coupling of the nematic order parameter to acoustic phonons changes the spatial and temporal fluctuations of the former in a fundamental way, resulting in different critical behavior of the nematic transverse-field Ising model, as compared to the usual case of the magnetic transverse-field Ising model. Our results establish TmVO4 as a model material and electronic nematicity as a paradigmatic example for quantum criticality in insulators.

6.
Nature ; 601(7891): 35-44, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34987212

RESUMO

Superconductivity is a remarkably widespread phenomenon that is observed in most metals cooled to very low temperatures. The ubiquity of such conventional superconductors, and the wide range of associated critical temperatures, is readily understood in terms of the well-known Bardeen-Cooper-Schrieffer theory. Occasionally, however, unconventional superconductors are found, such as the iron-based materials, which extend and defy this understanding in unexpected ways. In the case of the iron-based superconductors, this includes the different ways in which the presence of multiple atomic orbitals can manifest in unconventional superconductivity, giving rise to a rich landscape of gap structures that share the same dominant pairing mechanism. In addition, these materials have also led to insights into the unusual metallic state governed by the Hund's interaction, the control and mechanisms of electronic nematicity, the impact of magnetic fluctuations and quantum criticality, and the importance of topology in correlated states. Over the fourteen years since their discovery, iron-based superconductors have proven to be a testing ground for the development of novel experimental tools and theoretical approaches, both of which have extensively influenced the wider field of quantum materials.

7.
Phys Rev Lett ; 127(22): 227401, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34889631

RESUMO

Engineering novel states of matter with light is at the forefront of materials research. An intensely studied direction is to realize broken-symmetry phases that are "hidden" under equilibrium conditions but can be unleashed by an ultrashort laser pulse. Despite a plethora of experimental discoveries, the nature of these orders and how they transiently appear remain unclear. To this end, we investigate a nonequilibrium charge density wave (CDW) in rare-earth tritellurides, which is suppressed in equilibrium but emerges after photoexcitation. Using a pump-pump-probe protocol implemented in ultrafast electron diffraction, we demonstrate that the light-induced CDW consists solely of order parameter fluctuations, which bear striking similarities to critical fluctuations in equilibrium despite differences in the length scale. By calculating the dynamics of CDW fluctuations in a nonperturbative model, we further show that the strength of the light-induced order is governed by the amplitude of equilibrium fluctuations. These findings highlight photoinduced fluctuations as an important ingredient for the emergence of transient orders out of equilibrium. Our results further suggest that materials with strong fluctuations in equilibrium are promising platforms to host hidden orders after laser excitation.

8.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34503998

RESUMO

The elastocaloric effect (ECE) relates changes in entropy to changes in strain experienced by a material. As such, ECE measurements can provide valuable information about the entropy landscape proximate to strain-tuned phase transitions. For ordered states that break only point symmetries, bilinear coupling of the order parameter with strain implies that the ECE can also provide a window on fluctuations above the critical temperature and hence, in principle, can also provide a thermodynamic measure of the associated susceptibility. To demonstrate this, we use the ECE to sensitively reveal the presence of nematic fluctuations in the archetypal Fe-based superconductor Ba([Formula: see text])2[Formula: see text] By performing these measurements simultaneously with elastoresistivity in a multimodal fashion, we are able to make a direct and unambiguous comparison of these closely related thermodynamic and transport properties, both of which are sensitive to nematic fluctuations. As a result, we have uncovered an unanticipated doping dependence of the nemato-elastic coupling and of the magnitude of the scattering of low-energy quasi-particles by nematic fluctuations-while the former weakens, the latter increases dramatically with increasing doping.

9.
Science ; 372(6545): 973-977, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34045352

RESUMO

Quantum criticality may be essential to understanding a wide range of exotic electronic behavior; however, conclusive evidence of quantum critical fluctuations has been elusive in many materials of current interest. An expected characteristic feature of quantum criticality is power-law behavior of thermodynamic quantities as a function of a nonthermal tuning parameter close to the quantum critical point (QCP). Here, we observed power-law behavior of the critical temperature of the coupled nematic/structural phase transition as a function of uniaxial stress in a representative family of iron-based superconductors, providing direct evidence of quantum critical nematic fluctuations in this material. These quantum critical fluctuations are not confined within a narrow regime around the QCP but rather extend over a wide range of temperatures and compositions.

10.
Proc Natl Acad Sci U S A ; 118(16)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33846248

RESUMO

Spatial disorder has been shown to drive two-dimensional (2D) superconductors to an insulating phase through a superconductor-insulator transition (SIT). Numerical calculations predict that with increasing disorder, emergent electronic granularity is expected in these materials-a phenomenon where superconducting (SC) domains on the scale of the material's coherence length are embedded in an insulating matrix and coherently coupled by Josephson tunneling. Here, we present spatially resolved scanning tunneling spectroscopy (STS) measurements of the three-dimensional (3D) superconductor BaPb1-x Bi x O3 (BPBO), which surprisingly demonstrate three key signatures of emergent electronic granularity, having only been previously conjectured and observed in 2D thin-film systems. These signatures include the observation of emergent SC domains on the scale of the coherence length, finite energy gap over all space, and strong enhancement of spatial anticorrelation between pairing amplitude and gap magnitude as the SIT is approached. These observations are suggestive of 2D SC behavior embedded within a conventional 3D s-wave host, an intriguing but still unexplained interdimensional phenomenon, which has been hinted at by previous experiments in which critical scaling exponents in the vicinity of a putative 3D quantum phase transition are consistent only with dimensionality d = 2.

11.
Rev Sci Instrum ; 92(12): 123907, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34972440

RESUMO

In photoelectron spectroscopy, the measured electron momentum range is intrinsically related to the excitation photon energy. Low photon energies <10 eV are commonly encountered in laser-based photoemission and lead to a momentum range that is smaller than the Brillouin zones of most materials. This can become a limiting factor when studying condensed matter with laser-based photoemission. An additional restriction is introduced by widely used hemispherical analyzers that record only electrons photoemitted in a solid angle set by the aperture size at the analyzer entrance. Here, we present an upgrade to increase the effective solid angle that is measured with a hemispherical analyzer. We achieve this by accelerating the photoelectrons toward the analyzer with an electric field that is generated by a bias voltage on the sample. Our experimental geometry is comparable to a parallel plate capacitor, and therefore, we approximate the electric field to be uniform along the photoelectron trajectory. With this assumption, we developed an analytic, parameter-free model that relates the measured angles to the electron momenta in the solid and verify its validity by comparing with experimental results on the charge density wave material TbTe3. By providing a larger field of view in momentum space, our approach using a bias potential considerably expands the flexibility of laser-based photoemission setups.

12.
Rev Sci Instrum ; 91(4): 043102, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32357712

RESUMO

Performing time- and angle-resolved photoemission (tr-ARPES) spectroscopy at high momenta necessitates extreme ultraviolet laser pulses, which are typically produced via high harmonic generation (HHG). Despite recent advances, HHG-based setups still require large pulse energies (from hundreds of µJ to mJ) and their energy resolution is limited to tens of meV. Here, we present a novel 11 eV tr-ARPES setup that generates a flux of 5 × 1010 photons/s and achieves an unprecedented energy resolution of 16 meV. It can be operated at high repetition rates (up to 250 kHz) while using input pulse energies down to 3 µJ. We demonstrate these unique capabilities by simultaneously capturing the energy and momentum resolved dynamics in two well-separated momentum space regions of a charge density wave material ErTe3. This novel setup offers the opportunity to study the non-equilibrium band structure of solids with exceptional energy and time resolutions at high repetition rates.

13.
J Clin Epidemiol ; 122: 78-86, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32194148

RESUMO

OBJECTIVES: Electronic health records (EHR) provide a valuable resource for assessing drug side-effects, but treatments are not randomly allocated in routine care creating the potential for bias. We conduct a case study using the Prior Event Rate Ratio (PERR) Pairwise method to reduce unmeasured confounding bias in side-effect estimates for two second-line therapies for type 2 diabetes, thiazolidinediones, and sulfonylureas. STUDY DESIGN AND SETTINGS: Primary care data were extracted from the Clinical Practice Research Datalink (n = 41,871). We utilized outcomes from the period when patients took first-line metformin to adjust for unmeasured confounding. Estimates for known side-effects and a negative control outcome were compared with the A Diabetes Outcome Progression Trial (ADOPT) trial (n = 2,545). RESULTS: When on metformin, patients later prescribed thiazolidinediones had greater risks of edema, HR 95% CI 1.38 (1.13, 1.68) and gastrointestinal side-effects (GI) 1.47 (1.28, 1.68), suggesting the presence of unmeasured confounding. Conventional Cox regression overestimated the risk of edema on thiazolidinediones and identified a false association with GI. The PERR Pairwise estimates were consistent with ADOPT: 1.43 (1.10, 1.83) vs. 1.39 (1.04, 1.86), respectively, for edema, and 0.91 (0.79, 1.05) vs. 0.94 (0.80, 1.10) for GI. CONCLUSION: The PERR Pairwise approach offers potential for enhancing postmarketing surveillance of side-effects from EHRs but requires careful consideration of assumptions.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto/estatística & dados numéricos , Projetos de Pesquisa/estatística & dados numéricos , Compostos de Sulfonilureia/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento
14.
Phys Rev Lett ; 123(9): 097601, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31524450

RESUMO

Complex systems, which consist of a large number of interacting constituents, often exhibit universal behavior near a phase transition. A slowdown of certain dynamical observables is one such recurring feature found in a vast array of contexts. This phenomenon, known as critical slowing-down, is well studied mostly in thermodynamic phase transitions. However, it is less understood in highly nonequilibrium settings, where the time it takes to traverse the phase boundary becomes comparable to the timescale of dynamical fluctuations. Using transient optical spectroscopy and femtosecond electron diffraction, we studied a photoinduced transition of a model charge-density-wave (CDW) compound LaTe_{3}. We observed that it takes the longest time to suppress the order parameter at the threshold photoexcitation density, where the CDW transiently vanishes. This finding can be captured by generalizing the time-dependent Landau theory to a system far from equilibrium. The experimental observation and theoretical understanding of dynamical slowing-down may offer insight into other general principles behind nonequilibrium phase transitions in many-body systems.

15.
Proc Natl Acad Sci U S A ; 116(15): 7232-7237, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30898884

RESUMO

Ferroquadrupole order associated with local [Formula: see text] atomic orbitals of rare-earth ions is a realization of electronic nematic order. However, there are relatively few examples of intermetallic materials which exhibit continuous ferroquadrupole phase transitions, motivating the search for additional materials that fall into this category. Furthermore, it is not clear a priori whether experimental approaches based on transport measurements which have been successfully used to probe the nematic susceptibility in materials such as the Fe-based superconductors will be as effective in the case of [Formula: see text] intermetallic materials, for which the important electronic degrees of freedom are local rather than itinerant and are consequently less strongly coupled to the charge-carrying quasiparticles near the Fermi energy. In the present work, we demonstrate that the intermetallic compound [Formula: see text] exhibits a tetragonal-to-orthorhombic phase transition consistent with ferroquadrupole order of the Yb ions and go on to show that elastoresistivity measurements can indeed provide a clear window on the diverging nematic susceptibility in this system. This material provides an arena in which to study the causes and consequences of electronic nematicity.


Assuntos
Germânio/química , Rubídio/química , Supercondutividade , Itérbio/química
16.
Rev Sci Instrum ; 89(10): 103901, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399873

RESUMO

Elastoresistivity, the relation between resistivity and strain, can elucidate the subtle properties of the electronic structure of a material and is an increasingly important tool for the study of strongly correlated materials. To date, elastoresistivity measurements have predominantly been performed with quasi-static (DC) strain. In this work, we demonstrate a method using AC strain in elastoresistivity measurements. A sample experiencing AC strain has a time-dependent resistivity, which modulates the voltage produced by an AC current; this effect produces time-dependent variations in resistivity that are directly proportional to the elastoresistivity, and which can be measured more quickly, with less strain on the sample, and with less stringent requirements for temperature stability than the previous DC technique. Example measurements between 10 Hz and 3 kHz are performed on a material with a large, well-characterized and temperature dependent elastoresistivity: the representative iron-based superconductor Ba(Fe0.975Co0.025)2As2. These measurements yield a frequency independent elastoresistivity and reproduce results from previous DC elastoresistivity methods to within experimental accuracy. We emphasize that the dynamic (AC) elastoresistivity is a distinct material-specific property that has not previously been considered.

17.
Environ Manage ; 61(3): 408-420, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28948371

RESUMO

The complex nature of freshwater systems provides challenges for incorporating evidence-based techniques into management. This paper investigates the potential of participatory evidence-based techniques to involve local stakeholders and make decisions based on different "knowledge" sources within adaptive management programs. It focuses on the application of thresholds of potential concern (TPC) within strategic adaptive management (SAM) for facilitating inclusive decision-making. The study is based on the case of the Edward-Wakool (E-W) "Fish and Flows" SAM project in the Murray-Darling River Basin, Australia. We demonstrate the application of TPCs for improving collaborative decision-making within the E-W, associated with environmental watering requirements, and other natural resource management programs such as fish stocking. The development of TPCs in the E-W fish and flows SAM project helped improve stakeholder involvement and understanding of the system, and also the effectiveness of the implemented management interventions. TPCs ultimately helped inform environmental flow management activities. The TPC process complemented monitoring that was already occurring in the system and provided a mechanism for linking formal and informal knowledge to form explicit and measurable endpoints from objectives. The TPC process faced challenges due to the perceived reduction in scientific rigor within initial TPC development and use. However, TPCs must remain tangible to managers and other stakeholders, in order to aid in the implementation of adaptive management. Once accepted by stakeholders, over time TPCs should be reviewed and refined in order to increase their scientific rigor, as new information is generated.


Assuntos
Conservação dos Recursos Naturais , Monitoramento Ambiental/métodos , Água Doce , Participação dos Interessados , Movimentos da Água , Austrália , Tomada de Decisões , Avaliação de Programas e Projetos de Saúde , Rios
18.
Proc Natl Acad Sci U S A ; 114(51): 13430-13434, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29208710

RESUMO

The paradigmatic example of a continuous quantum phase transition is the transverse field Ising ferromagnet. In contrast to classical critical systems, whose properties depend only on symmetry and the dimension of space, the nature of a quantum phase transition also depends on the dynamics. In the transverse field Ising model, the order parameter is not conserved, and increasing the transverse field enhances quantum fluctuations until they become strong enough to restore the symmetry of the ground state. Ising pseudospins can represent the order parameter of any system with a twofold degenerate broken-symmetry phase, including electronic nematic order associated with spontaneous point-group symmetry breaking. Here, we show for the representative example of orbital-nematic ordering of a non-Kramers doublet that an orthogonal strain or a perpendicular magnetic field plays the role of the transverse field, thereby providing a practical route for tuning appropriate materials to a quantum critical point. While the transverse fields are conjugate to seemingly unrelated order parameters, their nontrivial commutation relations with the nematic order parameter, which can be represented by a Berry-phase term in an effective field theory, intrinsically intertwine the different order parameters.

19.
Phys Rev Lett ; 119(7): 077201, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28949659

RESUMO

Perpendicular magnetic anisotropy (PMA) plays a critical role in the development of spintronics, thereby demanding new strategies to control PMA. Here we demonstrate a conceptually new type of interface induced PMA that is controlled by oxygen octahedral rotation. In superlattices comprised of La_{1-x}Sr_{x}MnO_{3} and SrIrO_{3}, we find that all superlattices (0≤x≤1) exhibit ferromagnetism despite the fact that La_{1-x}Sr_{x}MnO_{3} is antiferromagnetic for x>0.5. PMA as high as 4×10^{6} erg/cm^{3} is observed by increasing x and attributed to a decrease of oxygen octahedral rotation at interfaces. We also demonstrate that oxygen octahedral deformation cannot explain the trend in PMA. These results reveal a new degree of freedom to control PMA, enabling discovery of emergent magnetic textures and topological phenomena.

20.
Water Res ; 125: 427-437, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28892770

RESUMO

Accurate modelling of chlorine concentrations throughout a drinking water system needs sound mathematical descriptions of decay mechanisms in bulk water and at pipe walls. Wall-reaction rates along pipelines in three different systems were calculated from differences between field chlorine profiles and accurately modelled bulk decay. Lined pipes with sufficiently large diameters (>500 mm) and higher chlorine concentrations (>0.5 mg/L) had negligible wall-decay rates, compared with bulk-decay rates. Further downstream, wall-reaction rate consistently increased (peaking around 0.15 mg/dm2/h) as chlorine concentration decreased, until mass-transport to the wall was controlling wall reaction. These results contradict wall-reaction models, including those incorporated in the EPANET software, which assume wall decay is of either zero-order (constant decay rate) or first-order (wall-decay rate reduces with chlorine concentration). Instead, results are consistent with facilitation of the wall reaction by biofilm activity, rather than surficial chemical reactions. A new model of wall reaction combines the effect of biofilm activity moderated by chlorine concentration and mass-transport limitation. This wall reaction model, with an accurate bulk chlorine decay model, is essential for sufficiently accurate prediction of chlorine residuals towards the end of distribution systems and therefore control of microbial contamination. Implementing this model in EPANET-MSX (or similar) software enables the accurate chlorine modelling required for improving disinfection strategies in drinking water networks. New insight into the effect of chlorine on biofilm can also assist in controlling biofilm to maintain chlorine residuals.


Assuntos
Biofilmes/efeitos dos fármacos , Cloro/análise , Desinfetantes/análise , Água Potável/química , Modelos Teóricos , Poluentes Químicos da Água/análise , Corrosão , Desinfecção , Engenharia Sanitária , Software , Purificação da Água , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...