Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 314, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321514

RESUMO

Pneumococcal flavin reductase (FlaR) is known to be cell-wall associated and possess age dependent antigenicity in children. This study aimed at characterizing FlaR and elucidating its involvement in pneumococcal physiology and virulence. Bioinformatic analysis of FlaR sequence identified three-conserved cysteine residues, suggesting a transition metal-binding capacity. Recombinant FlaR (rFlaR) bound Fe2+ and exhibited FAD-dependent NADP-reductase activity, which increased in the presence of cysteine or excess Fe2+ and inhibited by divalent-chelating agents. flaR mutant was highly susceptible to H2O2 compared to its wild type (WT) and complemented strains, suggesting a role for FlaR in pneumococcal oxidative stress resistance. Additionally, flaR mutant demonstrated significantly decreased mice mortality following intraperitoneal infection. Interestingly, lack of FlaR did not affect the extent of phagocytosis by primary mouse peritoneal macrophages but reduced adhesion to A549 cells compared to the WT and complemented strains. Noteworthy are the findings that immunization with rFlaR elicited protection in mice against intraperitoneal lethal challenge and anti-FlaR antisera neutralized bacterial virulence. Taken together, FlaR's roles in pneumococcal physiology and virulence, combined with its lack of significant homology to human proteins, point towards rFlaR as a vaccine candidate.


Assuntos
Aderência Bacteriana , Proteínas de Bactérias/genética , FMN Redutase/genética , Estresse Oxidativo , Streptococcus pneumoniae/patogenicidade , Animais , Proteínas de Bactérias/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , FMN Redutase/metabolismo , Feminino , Humanos , Macrófagos Peritoneais/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos CBA , Mutação , Fagocitose , Streptococcus pneumoniae/enzimologia , Streptococcus pneumoniae/genética , Virulência/genética
2.
PLoS One ; 11(3): e0150320, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26990554

RESUMO

In Streptococcus pneumonia, phosphoenolpyruvate protein phosphotransferase (PtsA) is an intracellular protein of the monosaccharide phosphotransferase systems. Biochemical and immunostaining methods were applied to show that PtsA also localizes to the bacterial cell-wall. Thus, it was suspected that PtsA has functions other than its main cytoplasmic enzymatic role. Indeed, recombinant PtsA and anti-rPtsA antiserum were shown to inhibit adhesion of S. pneumoniae to cultured human lung adenocarcinoma A549 cells. Screening of a combinatorial peptide library expressed in a filamentous phage with rPtsA identified epitopes that were capable of inhibiting S. pneumoniae adhesion to A549 cells. The insert peptides in the phages were sequenced, and homologous sequences were found in human BMPER, multimerin1, protocadherin19, integrinß4, epsin1 and collagen type VIIα1 proteins, all of which can be found in A549 cells except the latter. Six peptides, synthesized according to the homologous sequences in the human proteins, specifically bound rPtsA in the micromolar range and significantly inhibited pneumococcal adhesion in vitro to lung- and tracheal-derived cell lines. In addition, the tested peptides inhibited lung colonization after intranasal inoculation of mice with S. pneumoniae. Immunization with rPtsA protected the mice against a sublethal intranasal and a lethal intravenous pneumococcal challenge. In addition, mouse anti rPtsA antiserum reduced bacterial virulence in the intravenous inoculation mouse model. These findings showed that the surface-localized PtsA functions as an adhesin, PtsA binding peptides derived from its putative target molecules can be considered for future development of therapeutics, and rPtsA should be regarded as a candidate for vaccine development.


Assuntos
Parede Celular/enzimologia , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Fosfotransferases (Aceptor do Grupo Nitrogenado)/metabolismo , Vacinas Pneumocócicas/imunologia , Streptococcus pneumoniae/enzimologia , Adesinas Bacterianas/fisiologia , Linhagem Celular Tumoral , Pré-Escolar , Citometria de Fluxo , Humanos , Streptococcus pneumoniae/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA