Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1251452, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022500

RESUMO

Necroptosis, a pathway of regulated necrosis, involves recruitment and activation of RIPK1, RIPK3 and MLKL, leading to cell membrane rupture, cell death and release of intracellular contents causing further injury and inflammation. Necroptosis is believed to play an important role in the pathogenesis of kidney ischemia-reperfusion injury (IRI). However, the dynamics of necroptosis in kidney IRI is poorly understood, in part due to difficulties in detecting phosphorylated MLKL (pMLKL), the executioner of the necroptosis pathway. Here, we investigated the temporal and spatial activation of necroptosis in a mouse model of unilateral warm kidney IRI, using a robust method to stain pMLKL. We identified the period 3-12 hrs after reperfusion as a critical phase for the activation of necroptosis in proximal tubular cells. After 12 hrs, the predominant pattern of pMLKL staining shifted from cytoplasmic to membrane, indicating progression to the terminal phase of necroptotic cell death. Mlkl-ko mice exhibited reduced kidney inflammation at 12 hrs and lower serum creatinine and tubular injury at 24 hrs compared to wild-type littermates. Interestingly, we observed increased apoptosis in the injured kidneys of Mlkl-ko mice, suggesting a relationship between necroptosis and apoptosis in kidney IRI. Together, our findings confirm the role of necroptosis and necroinflammation in kidney IRI, and identify the first 3 hrs following reperfusion as a potential window for targeted treatments.


Assuntos
Necroptose , Traumatismo por Reperfusão , Animais , Camundongos , Rim/patologia , Necrose/patologia , Inflamação/metabolismo , Traumatismo por Reperfusão/metabolismo
2.
Xenotransplantation ; : e12836, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37961013

RESUMO

BACKGROUND: Pig islet xenotransplantation is a potential treatment for type 1 diabetes. We have shown that maintenance immunosuppression is required to protect genetically modified (GM) porcine islet xenografts from T cell-mediated rejection in baboons. Local expression of a depleting anti-CD2 monoclonal antibody (mAb) by the xenograft may provide an alternative solution. We have previously reported the generation of GGTA1 knock-in transgenic pigs expressing the chimeric anti-CD2 mAb diliximab under an MHC class I promoter (MHCIP). In this study, we generated GGTA1 knock-in pigs in which MHCIP was replaced by the ß-cell-specific porcine insulin promoter (PIP), and compared the pattern of diliximab expression in the two lines. METHODS: A PIP-diliximab knock-in construct was prepared and validated by transfection of NIT-1 mouse insulinoma cells. The construct was knocked into GGTA1 in wild type (WT) porcine fetal fibroblasts using CRISPR, and knock-in cells were used to generate pigs by somatic cell nuclear transfer (SCNT). Expression of the transgene in MHCIP-diliximab and PIP-diliximab knock-in pigs was characterised at the mRNA and protein levels using RT-qPCR, flow cytometry, ELISA and immunohistochemistry. Islets from MHCIP-diliximab and control GGTA1 KO neonatal pigs were transplanted under the kidney capsule of streptozotocin-diabetic SCID mice. RESULTS: NIT-1 cells stably transfected with the PIP-diliximab knock-in construct secreted diliximab into the culture supernatant, confirming correct expression and processing of the mAb in ß cells. PIP-diliximab knock-in pigs showed a precise integration of the transgene within GGTA1. Diliximab mRNA was detected in all tissues tested (spleen, kidney, heart, liver, lung, pancreas) in MHCIP-diliximab pigs, but was not detectable in PIP-diliximab pigs. Likewise, diliximab was present in the serum of MHCIP-diliximab pigs, at a mean concentration of 1.8 µg/mL, but was not detected in PIP-diliximab pig serum. An immunohistochemical survey revealed staining for diliximab in all organs of MHCIP-diliximab pigs but not of PIP-diliximab pigs. Whole genome sequencing (WGS) of a PIP-diliximab pig identified a missense mutation in the coding region for the dixilimab light chain. This mutation was also found to be present in the fibroblast knock-in clone used to generate the PIP-diliximab pigs. Islet xenografts from neonatal MHCIP-diliximab pigs restored normoglycemia in diabetic immunodeficient mice, indicating no overt effect of the transgene on islet function, and demonstrated expression of diliximab in situ. CONCLUSION: Diliximab was widely expressed in MHCIP-diliximab pigs, including in islets, consistent with the endogenous expression pattern of MHC class I. Further investigation is required to determine whether the level of expression in islets from the MHCIP-diliximab pigs is sufficient to prevent T cell-mediated islet xenograft rejection. The unexpected absence of diliximab expression in the islets of PIP-diliximab pigs was probably due to a mutation in the transgene arising during the generation of the knock-in cells used for SCNT.

3.
Sci Rep ; 11(1): 21873, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750424

RESUMO

The complement system is a potent mediator of ischemia-reperfusion injury (IRI), which detrimentally affects the function and survival of transplanted kidneys. Human complement receptor 1 (HuCR1) is an integral membrane protein that inhibits complement activation by blocking the convertases that activate C3 and C5. We have previously reported that CSL040, a truncated form of recombinant soluble HuCR1 (sHuCR1), has enhanced complement inhibitory activity and improved pharmacokinetic properties compared to the parent molecule. Here, we compared the capacity of CSL040 and full-length sHuCR1 to suppress complement-mediated organ damage in a mouse model of warm renal IRI. Mice were treated with two doses of CSL040 or sHuCR1, given 1 h prior to 22 min unilateral renal ischemia and again 3 h later. 24 h after reperfusion, mice treated with CSL040 were protected against warm renal IRI in a dose-dependent manner, with the highest dose of 60 mg/kg significantly reducing renal dysfunction, tubular injury, complement activation, endothelial damage, and leukocyte infiltration. In contrast, treatment with sHuCR1 at a molar equivalent dose to 60 mg/kg CSL040 did not confer significant protection. Our results identify CSL040 as a promising therapeutic candidate to attenuate renal IRI and demonstrate its superior efficacy over full-length sHuCR1 in vivo.


Assuntos
Rim/lesões , Receptores de Complemento 3b/administração & dosagem , Traumatismo por Reperfusão/prevenção & controle , Animais , Ativação do Complemento/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Rim/efeitos dos fármacos , Rim/imunologia , Transplante de Rim/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Receptores de Complemento 3b/química , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/imunologia , Solubilidade
4.
J Immunol ; 205(5): 1433-1440, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32839213

RESUMO

Ischemia-reperfusion injury (IRI) is a complex inflammatory process that detrimentally affects the function of transplanted organs. Neutrophils are important contributors to the pathogenesis of renal IRI. Signaling by G-CSF, a regulator of neutrophil development, trafficking, and function, plays a key role in several neutrophil-associated inflammatory disease models. In this study, we investigated whether targeting neutrophils with a neutralizing mAb to G-CSFR would reduce inflammation and protect against injury in a mouse model of warm renal IRI. Mice were treated with anti-G-CSFR 24 h prior to 22-min unilateral renal ischemia. Renal function and histology, complement activation, and expression of kidney injury markers, and inflammatory mediators were assessed 24 h after reperfusion. Treatment with anti-G-CSFR protected against renal IRI in a dose-dependent manner, significantly reducing serum creatinine and urea, tubular injury, neutrophil and macrophage infiltration, and complement activation (plasma C5a) and deposition (tissue C9). Renal expression of several proinflammatory genes (CXCL1/KC, CXCL2/MIP-2, MCP-1/CCL2, CXCR2, IL-6, ICAM-1, P-selectin, and C5aR) was suppressed by anti-G-CSFR, as was the level of circulating P-selectin and ICAM-1. Neutrophils in anti-G-CSFR-treated mice displayed lower levels of the chemokine receptor CXCR2, consistent with a reduced ability to traffic to inflammatory sites. Furthermore, whole transcriptome analysis using RNA sequencing showed that gene expression changes in IRI kidneys after anti-G-CSFR treatment were indistinguishable from sham-operated kidneys without IRI. Hence, anti-G-CSFR treatment prevented the development of IRI in the kidneys. Our results suggest G-CSFR blockade as a promising therapeutic approach to attenuate renal IRI.


Assuntos
Nefropatias/tratamento farmacológico , Substâncias Protetoras/farmacologia , Receptores de Fator Estimulador de Colônias de Granulócitos/antagonistas & inibidores , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Quimiocinas/metabolismo , Ativação do Complemento/efeitos dos fármacos , Creatinina/sangue , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Inflamação/sangue , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Nefropatias/sangue , Nefropatias/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Traumatismo por Reperfusão/sangue , Traumatismo por Reperfusão/metabolismo , Ureia/sangue
5.
Xenotransplantation ; 27(2): e12557, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31556182

RESUMO

BACKGROUND: Endothelial protein C receptor (EPCR) plays an anticoagulant and anti-inflammatory role by promoting the activation of protein C by thrombin bound to thrombomodulin (TBM). Incompatibility between pig TBM and human/primate thrombin is thought to contribute to dysregulated coagulation in pig-to-primate organ xenografts, and expression of human TBM (hTBM) in pigs has shown benefit in preclinical models. However, it is not known whether there are incompatibilities-or molecular barriers-between endogenous pig EPCR (pEPCR) and transgenically expressed human TBM. AIM: To clone and express pEPCR, and determine its function in the human protein C pathway in vitro. METHODS: Pig endothelial protein C receptor cDNA was generated from pig lung RNA by RT-PCR. Primate COS-7 transfectants expressing various combinations of human and pig TBM and EPCR were incubated with human thrombin and human protein C, and tested for TBM cofactor activity. RESULTS: The predicted protein sequence of pEPCR shared 72.3% amino acid sequence identity with hEPCR, and residues critical for protein C binding were conserved. COS-7 cells transfected with hEPCR, pEPCR or vector showed minimal TBM cofactor activity (0.13 ± 0.04, 0.13 ± 0.02 and 0.14 ± 0.06 U, respectively). The cofactor activity of hTBM-transfected cells (1.18 ± 0.29 U) was 8-fold higher than vector-transfected cells (P = .004) and further increased 4-fold and 3-fold by co-transfection with hEPCR (5.01 ± 1.12 U, P = .004) or pEPCR (3.73 ± 0.65 U, P = .003), respectively. CONCLUSIONS: Our data show that pEPCR is largely compatible with the human TBM/thrombin complex, when expressed on COS-7 cells in vitro, promoting the activation of human protein C. These findings suggest that endogenous pEPCR will enhance the activity of transgenic hTBM in the xenograft setting.


Assuntos
Animais Geneticamente Modificados/imunologia , Células Endoteliais/metabolismo , Receptor de Proteína C Endotelial/metabolismo , Proteína C/metabolismo , Animais , Coagulação Sanguínea/fisiologia , Receptor de Proteína C Endotelial/genética , Suínos , Transplante Heterólogo/métodos
6.
Xenotransplantation ; 27(1): e12551, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31407391

RESUMO

Gene editing using clustered regularly interspaced short palindromic repeats/Cas9 has great potential for improving the compatibility of porcine organs with human recipients. However, the risk of detrimental off-target mutations in gene-edited pigs remains largely undefined. We have previously generated GGTA1 knock-in pigs for xenotransplantation using FokI-dCas9, a variant of Cas9 that is reported to reduce the frequency of off-target mutagenesis. In this study, we used whole genome sequencing (WGS) and optimized bioinformatic analysis to assess the fidelity of FokI-dCas9 editing in the generation of these pigs. Genomic DNA was isolated from porcine cells before and after gene editing and sequenced by WGS. The genomic sequences were analyzed using GRIDSS variant-calling software to detect putative structural variations (SVs), which were validated by PCR of DNA from knock-in and wild-type pigs. Platypus variant-calling software was used to detect single-nucleotide variations (SNVs) and small insertions/deletions (indels). GRIDSS analysis confirmed the precise integration of one copy of the knock-in construct in the gene-edited cells. Three additional SVs were detected by GRIDSS: deletions in intergenic regions in chromosome 6 and the X chromosome and a duplication of part of the CALD1 gene on chromosome 18. These mutations were not associated with plausible off-target sites, and were not detected in a second line of knock-in pigs generated using the same pair of guide RNAs, suggesting that they were the result of background mutation rather than off-target activity. Platypus identified 1375 SNVs/indels after quality filtering, but none of these were located in proximity to potential off-target sites, indicating that they were probably also spontaneous mutations. This is the first WGS analysis of pigs generated from FokI-dCas9-edited cells. Our results demonstrate that FokI-dCas9 is capable of high-fidelity gene editing with negligible off-target or undesired on-target mutagenesis.


Assuntos
Proteína 9 Associada à CRISPR/genética , Biologia Computacional/métodos , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Edição de Genes/métodos , Mutação/genética , Animais , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Análise Mutacional de DNA , Estudos de Viabilidade , Sus scrofa , Transplante Heterólogo , Sequenciamento Completo do Genoma
7.
Sci Rep ; 7(1): 8383, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28814758

RESUMO

Xenotransplantation from pigs has been advocated as a solution to the perennial shortage of donated human organs and tissues. CRISPR/Cas9 has facilitated the silencing of genes in donor pigs that contribute to xenograft rejection. However, the generation of modified pigs using second-generation nucleases with much lower off-target mutation rates than Cas9, such as FokI-dCas9, has not been reported. Furthermore, there have been no reports on the use of CRISPR to knock protective transgenes into detrimental porcine genes. In this study, we used FokI-dCas9 with two guide RNAs to integrate a 7.1 kilobase pair transgene into exon 9 of the GGTA1 gene in porcine fetal fibroblasts. The modified cells lacked expression of the αGal xenoantigen, and secreted an anti-CD2 monoclonal antibody encoded by the transgene. PCR and sequencing revealed precise integration of the transgene into one allele of GGTA1, and a small deletion in the second allele. The cells were used for somatic cell nuclear transfer to generate healthy male knock-in piglets, which did not express αGal and which contained anti-CD2 in their serum. We have therefore developed a versatile high-fidelity system for knocking transgenes into the pig genome for xenotransplantation purposes.


Assuntos
Anticorpos Monoclonais/genética , Antígenos CD2/imunologia , Proteína 9 Associada à CRISPR/genética , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Galactosiltransferases/genética , Suínos/genética , Animais , Animais Geneticamente Modificados , Feminino , Fibroblastos , Técnicas de Introdução de Genes , Marcação de Genes , Humanos , Masculino , Técnicas de Transferência Nuclear , Gravidez , Reprodutibilidade dos Testes , Transgenes
8.
J Immunol ; 198(12): 4837-4845, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28500075

RESUMO

Deficiency in the membrane-bound complement regulators CD55 and CD59 exacerbates renal ischemia-reperfusion injury (IRI) in mouse models, but the effect of increasing CD55 and CD59 activity has not been examined. In this study, we investigated the impact of overexpression of human (h) CD55 ± hCD59 or treatment with soluble rhCD55 in a mouse model of renal IRI. Unilaterally nephrectomised mice were subjected to 18 (mild IRI) or 22 min (moderate IRI) warm renal ischemia, and analyzed 24 h after reperfusion for renal function (serum creatinine and urea), complement deposition (C3b/c and C9), and infiltration of neutrophils and macrophages. Transgenic mice expressing hCD55 alone were protected against mild renal IRI, with reduced creatinine and urea levels compared with wild type littermates. However, the renal function of the hCD55 mice was not preserved in the moderate IRI model, despite a reduction in C3b/c and C9 deposition and innate cell infiltration. Mice expressing both hCD55 and hCD59, on the other hand, were protected in the moderate IRI model, with significant reductions in all parameters measured. Wild type mice treated with rhCD55 immediately after reperfusion were also protected in the moderate IRI model. Thus, manipulation of CD55 activity to increase inhibition of the C3 and C5 convertases is protective against renal IRI, and the additional expression of hCD59, which regulates the terminal complement pathway, provides further protection. Therefore, anti-complement therapy using complement regulatory proteins may provide a potential clinical option for preventing tissue and organ damage in renal IRI.


Assuntos
Antígenos CD55/genética , Antígenos CD55/uso terapêutico , Antígenos CD59/genética , Nefropatias/terapia , Traumatismo por Reperfusão/terapia , Animais , Antígenos CD55/imunologia , Ativação do Complemento , Creatinina/sangue , Humanos , Nefropatias/imunologia , Nefropatias/fisiopatologia , Macrófagos/imunologia , Camundongos , Camundongos Transgênicos , Neutrófilos/imunologia , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/fisiopatologia , Ureia/sangue
9.
Transplantation ; 100(6): 1228-37, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27120451

RESUMO

BACKGROUND: ABO-incompatible (ABOi) organ transplantation is performed owing to unremitting donor shortages. Defining mechanisms of antibody-mediated rejection, accommodation, and tolerance of ABOi grafts is limited by lack of a suitable animal model. We report generation and characterization of a murine model to enable study of immunobiology in the setting of ABOi transplantation. METHODS: Transgenesis of a construct containing human A1- and H-transferases under control of the ICAM-2 promoter was performed in C57BL/6 (B6) mice. A-transgenic (A-Tg) mice were assessed for A-antigen expression by histology and flow cytometry. B6 wild-type (WT) mice were sensitized with blood group A-human erythrocytes; others received passive anti-A monoclonal antibody and complement after heart transplant. Serum anti-A antibodies were assessed by hemagglutination. "A-into-O" transplantation (major histocompatibility complex syngeneic) was modeled by transplanting hearts from A-Tg mice into sensitized or nonsensitized WT mice. Antibody-mediated rejection was assessed by morphology/immunohistochemistry. RESULTS: A-Tg mice expressed A-antigen on vascular endothelium and other cells including erythrocytes. Antibody-mediated rejection was evident in 15/17 A-Tg grafts in sensitized WT recipients (median titer, 1:512), with 2 showing hyperacute rejection and rapid cessation of graft pulsation. Hyperacute rejection was observed in 8/8 A-Tg grafts after passive transfer of anti-A antibody and complement into nonsensitized recipients. Antibody-mediated rejection was not observed in A-Tg grafts transplanted into nonsensitized mice. CONCLUSIONS: A-Tg heart grafts transplanted into WT mice with abundant anti-A antibody manifests characteristic features of antibody-mediated rejection. These findings demonstrate an effective murine model to facilitate study of immunologic features of ABOi transplantation and to improve potential diagnostic and therapeutic strategies.


Assuntos
Sistema ABO de Grupos Sanguíneos/imunologia , Incompatibilidade de Grupos Sanguíneos/imunologia , Rejeição de Enxerto , Transplante de Coração , Animais , Anticorpos Monoclonais/imunologia , Antígenos/imunologia , Antígenos CD/genética , Moléculas de Adesão Celular/genética , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Eritrócitos/citologia , Eritrócitos/imunologia , Citometria de Fluxo , Glicosiltransferases/genética , Sobrevivência de Enxerto , Humanos , Tolerância Imunológica , Imuno-Histoquímica , Imunofenotipagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regiões Promotoras Genéticas
10.
Xenotransplantation ; 18(2): 121-30, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21496119

RESUMO

BACKGROUND: Expression of multiple graft-protective proteins targeted to different locations (i.e., intracellular, cell surface, and secreted) has become an increasingly important goal in xenotransplantation. The 2A "ribosome skip" signal is used as a linker to enable transgene co-expression, but some studies have shown that post-translational modification and trafficking of 2A-linked proteins may be adversely affected depending on their position relative to 2A. We tested whether several relevant proteins, subject to a range of processing and localization mechanisms, could be efficiently co-expressed using the 2A system. METHODS: Six expression cassettes were constructed, each containing up to four 2A-linked open reading frames, encoding combinations of human CD55, thrombomodulin (TBM), CD39, CTLA4-Ig and hygromycin resistance. Each linker incorporated a furin cleavage site to remove the carboxy-terminal extension that remains on upstream proteins after 2A processing. The cassettes were used to produce vectors for transfection, adenoviral transduction and transgenesis. Expression was detected by flow cytometry and/or Western blotting. RESULTS: All proteins were expressed in the appropriate location following transient transfection of COS-7 cells, irrespective of the number of linked genes. The percentage of stable transfectants expressing a linked gene was increased 10-fold (from 4-5% to 58-67%) by incorporating the hygromycin resistance gene into the cassette. Stable transfection of transgenic GalT KO pig fibroblasts with a hygromycin- TBM-CD39 construct resulted in surface expression of both TBM and CD39 by the majority of hygromycin-resistant cells. Expression was maintained after flow cytometric sorting and expansion. Adenoviral transduction of NIT-1 mouse insulinoma cells with a TBM-CD39 construct resulted in strong expression of both genes on the cell surface. Mice transgenic for 3-gene (CD55- TBM-CD39) or 4-gene (CD55- TBM-CTLA4Ig-CD39) constructs expressed all genes except CD55. CONCLUSIONS: These results confirm the versatility of the 2A system, and demonstrate that careful construct design can minimize potential problems with post-translational modification and trafficking. In addition, incorporation of a selection marker into the 2A-linked chain can dramatically increase the proportion of stable transfectants expressing proteins of interest. This provides a powerful method for the rapid modification of existing genetically modified pigs.


Assuntos
Antígenos CD/genética , Apirase/genética , Antígenos CD55/genética , Elementos de DNA Transponíveis/genética , Sobrevivência de Enxerto/genética , Imunoconjugados/genética , Trombomodulina/genética , Transplante Heterólogo/métodos , Abatacepte , Adenoviridae/genética , Animais , Animais Geneticamente Modificados , Antígenos CD/metabolismo , Apirase/metabolismo , Sequência de Bases , Antígenos CD55/metabolismo , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Fibroblastos/metabolismo , Fibroblastos/patologia , Galactosiltransferases/genética , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Imunoconjugados/metabolismo , Insulinoma/metabolismo , Insulinoma/patologia , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Processamento de Proteína Pós-Traducional , Suínos , Trombomodulina/metabolismo , Transfecção
11.
Xenotransplantation ; 14(4): 339-44, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17669176

RESUMO

We report here our experience regarding the production of double or homozygous Gal knockout (Gal KO) pigs by breeding and somatic cell nuclear transfer (SCNT). Large White x Landrace female heterozygous Gal KO founders produced using SCNT were mated with Hampshire or Duroc males to produce a F1 generation. F1 heterozygous pigs were then bred to half-sibs to produce a F2 generation which contained Gal KO pigs. To determine the viability of mating Gal KO pigs with each other, one female F2 Gal KO pig was bred to a half-sib and subsequently a full-sib Gal KO. F1 and F2 heterozygous females were also mated to F2 Gal KO males. All three types of matings produced Gal KO pigs. To produce Gal KO pigs by SCNT, heterozygous F1s were bred together and F2 fetuses were harvested to establish primary cultures of Gal KO fetal fibroblasts. Gal KO embryos were transferred to five recipients, one of which became pregnant and had a litter of four piglets. Together our results demonstrate that Gal KO pigs can be produced by breeding with each other and by SCNT using Gal KO fetal fibroblasts.


Assuntos
Animais Geneticamente Modificados , Animais Endogâmicos/imunologia , Galactosiltransferases/genética , Galactosiltransferases/imunologia , Técnicas de Transferência Nuclear , Criação de Animais Domésticos/métodos , Animais , Fibroblastos , Humanos , Masculino , Miocárdio/imunologia , Miocárdio/ultraestrutura , Suínos , Transplante Heterólogo
12.
Transplantation ; 82(10): 1362-9, 2006 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-17130786

RESUMO

BACKGROUND: There are conflicting reports on the importance of antibody and cell-mediated mechanisms and the influence of TH1 or TH2 cytokines on acute vascular xenograft rejection. We sought to resolve some of the recent discrepancies in the rat-to-mouse xenograft model where different recipient strains are used and investigated the TH1/TH2 influence on rejection. METHODS: Lewis rat heart xenograft survival was compared between BALB/c and C57BL/6 recipients. Antigraft antibody deposition, serum anti-rat antibody levels and B-cell deficient recipients were used to examine the contribution of antibody to rejection. To further investigate a TH1 or TH2 bias effect in vivo, we used BALB/c STAT4 knockout (KO) and STAT6 KO recipient mice. Experiments were repeated with rat skin xenografts to examine TH1/TH2 influences on cell-mediated rejection. RESULTS: The median survival (MS) of rat heart xenografts in BALB/c and C57BL/6 mice was five and eight days, respectively (P = 0.002). The MS in B-cell deficient mice was 16 days (P < 0.001). The MS in STAT4 KO and STAT6 KO mice was six and seven days respectively (P = 0.009). All non-B-cell deficient recipients showed strong IgM deposition and histological features of both cellular and antibody-mediated rejection. There was no correlation between serum anti-rat antibody levels and graft outcome or graft deposition. There was no survival difference of skin xenografts in BALB/c, C57BL/6, B-cell deficient, STAT6 KO, or STAT4 KO mice (8-9 days). CONCLUSIONS: Both humoral and cell-mediated immunity have significant roles in vascularized heart xenograft rejection. TH1/TH2 biases minimally affect rejection through humoral but not cellular immunity.


Assuntos
Sobrevivência de Enxerto/imunologia , Transplante de Coração/imunologia , Transplante de Pele/imunologia , Transplante Heterólogo/imunologia , Animais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Ratos Endogâmicos Lew , Fator de Transcrição STAT4/genética , Fator de Transcrição STAT6/deficiência , Fator de Transcrição STAT6/genética
13.
Xenotransplantation ; 13(6): 514-21, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17059578

RESUMO

BACKGROUND: Targeting protective gene expression to porcine endothelium has obvious advantages in xenotransplantation, but no endothelial cell-specific promoters have yet been used successfully in transgenic pigs. We have previously reported that a human intercellular adhesion molecule-2 (ICAM-2) gene promoter fragment functioned efficiently in transgenic mice but not pigs, suggesting that it lacked important transcriptional signals. In this study, we cloned and characterized regulatory elements of the pig ICAM-2 gene. METHODS: Various segments of the pig ICAM-2 gene upstream region and first intron were cloned into a luciferase reporter vector and assayed for promoter activity in vitro. Putative regulatory elements were analysed by site-directed mutagenesis. RESULTS: A 0.90-kb pig ICAM-2 promoter fragment had strong activity in pig endothelial cells but not in non-endothelial cells. Deletion analysis revealed that the majority of promoter activity was specified by a 0.48-kb sub-fragment with significant homology to the human ICAM-2 promoter. Conserved positive-acting elements included binding sites for GATA and Ets transcription factors, and a palindromic octamer (P(8)) that has been implicated in the endothelial specificity of several genes. Significant enhancer activity was identified within the first intron of the pig ICAM-2 gene. Mutational analysis was used to show that a second P(8) site in the first intron was essential for enhancer activity. CONCLUSIONS: The pig and human ICAM-2 promoters exhibit many similarities, but the pig ICAM-2 gene, unlike its human and mouse homologs, contains P(8) sites in both the promoter and first intron. The enhancer activity associated with the intronic P(8) site suggests that it may be the key to achieving strong endothelial cell-specific transgene expression in pigs.


Assuntos
Moléculas de Adesão Celular/metabolismo , Células Endoteliais/metabolismo , Regiões Promotoras Genéticas/genética , Transgenes/genética , Animais , Sequência de Bases , Moléculas de Adesão Celular/genética , Linhagem Celular , Chlorocebus aethiops , Humanos , Íntrons/genética , Dados de Sequência Molecular , Mutação/genética , Suínos
14.
Diabetes ; 54(7): 2109-16, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15983212

RESUMO

Primary nonfunction of transplanted islets results in part from their sensitivity to reactive oxygen species (ROS) generated during the isolation and transplantation process. Our aim was to examine whether coexpression of antioxidant enzymes to detoxify multiple ROS increased the resistance of mouse islets to oxidative stress and improved the initial function of islet grafts. Islets from transgenic mice expressing combinations of human copper/zinc superoxide dismutase (SOD), extracellular SOD, and cellular glutathione peroxidase (Gpx-1) were subjected to oxidative stress in vitro. Relative viability after hypoxanthine/xanthine oxidase treatment was as follows: extracellular SOD + Gpx-1 + Cu/Zn SOD > extracellular SOD + Gpx-1 > extracellular SOD > wild type. Expression of all three enzymes was the only combination protective against hypoxia/reoxygenation. Islets from transgenic or control wild-type mice were then transplanted into streptozotocin-induced diabetic recipients in a syngeneic marginal islet mass model, and blood glucose levels were monitored for 7 days. In contrast to single- and double-transgenic grafts, triple-transgenic grafts significantly improved control of blood glucose compared with wild type. Our results indicate that coexpression of antioxidant enzymes has a complementary beneficial effect and may be a useful approach to reduce primary nonfunction of islet grafts.


Assuntos
Glutationa Peroxidase/genética , Estresse Oxidativo/fisiologia , Superóxido Dismutase/genética , Animais , Sequência de Bases , Glicemia/metabolismo , Clonagem Molecular , Primers do DNA , DNA Complementar/genética , Diabetes Mellitus Experimental/sangue , Isoenzimas/genética , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase , Glutationa Peroxidase GPX1
15.
J Clin Invest ; 113(10): 1440-6, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15146241

RESUMO

Extracellular nucleotides play an important role in thrombosis and inflammation, triggering a range of effects such as platelet activation and recruitment, endothelial cell activation, and vasoconstriction. CD39, the major vascular nucleoside triphosphate diphosphohydrolase (NTPDase), converts ATP and ADP to AMP, which is further degraded to the antithrombotic and anti-inflammatory mediator adenosine. Deletion of CD39 renders mice exquisitely sensitive to vascular injury, and CD39-null cardiac xenografts show reduced survival. Conversely, upregulation of CD39 by somatic gene transfer or administration of soluble NTPDases has major benefits in models of transplantation and inflammation. In this study we examined the consequences of transgenic expression of human CD39 (hCD39) in mice. Importantly, these mice displayed no overt spontaneous bleeding tendency under normal circumstances. The hCD39 transgenic mice did, however, exhibit impaired platelet aggregation, prolonged bleeding times, and resistance to systemic thromboembolism. Donor hearts transgenic for hCD39 were substantially protected from thrombosis and survived longer in a mouse cardiac transplant model of vascular rejection. These thromboregulatory manifestations in hCD39 transgenic mice suggest important therapeutic potential in clinical vascular disease and in the control of serious thrombotic events that compromise the survival of porcine xenografts in primates.


Assuntos
Adenosina Trifosfatases/genética , Adenosina Trifosfatases/fisiologia , Antígenos CD/genética , Antígenos CD/fisiologia , Trombose/imunologia , Adenosina/sangue , Monofosfato de Adenosina/sangue , Animais , Apirase , Plaquetas/fisiologia , Transplante de Medula Óssea/imunologia , Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Fenótipo , Trombose/genética , Imunologia de Transplantes
16.
Xenotransplantation ; 11(1): 53-9, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14962293

RESUMO

The survival of pancreatic islet beta-cell xenografts and allografts may be affected by damaging reactive oxygen and nitrogen species generated during hypoxia-reoxygenation. Peroxynitrite, which is formed from superoxide and nitric oxide, appears to be an important mediator of beta-cell destruction. The intracellular antioxidant enzymes glutathione peroxidase-1 (Gpx-1) and copper-zinc superoxide dismutase (CuZn SOD) detoxify peroxynitrite and superoxide, respectively. The aim of this study was to examine whether enhanced expression of Gpx-1 and/or CuZn SOD protected NIT-1 mouse insulinoma cells from hypoxia-reoxygenation injury. Stable transfectants expressing human Gpx-1 or CuZn SOD were isolated and tested for their resistance to hydrogen peroxide (H(2)O(2)) and menadione, which generates superoxide intracellularly. Clones expressing one or both enzymes were subjected to hypoxia in glucose-free medium for 18 h, followed by reoxygenation in complete medium for 1.5 h. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) reduction assay. Increases of up to two fold in Gpx or total SOD activity protected NIT-1 cells from H(2)O(2) and menadione. Expression of Gpx-1 significantly increased NIT-1 survival following hypoxia-reoxygenation (viability 65 +/- 9% vs. control 15 +/- 3%, P < 0.001) but CuZn SOD expression had no effect (15 +/- 1%). Expression of both enzymes was no more protective (60 +/- 6%) than expression of Gpx-1 alone. Genetic manipulation of islet beta cells to increase expression of Gpx-1 may protect them from oxidative injury associated with the transplantation procedure.


Assuntos
Citoproteção , Glutationa Peroxidase/metabolismo , Hipóxia/fisiopatologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/enzimologia , Oxigênio/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Glutationa Peroxidase/farmacologia , Humanos , Peróxido de Hidrogênio/farmacologia , Hipóxia/metabolismo , Isoenzimas/metabolismo , Isoenzimas/farmacologia , Camundongos , Oxidantes/farmacologia , Superóxido Dismutase/metabolismo , Transfecção , Vitamina K 3/farmacologia
17.
Xenotransplantation ; 10(3): 223-31, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12694542

RESUMO

It is highly likely that successful pig-to-human xenotransplantation of vascularized organs will require genetic modification of the donor pig, and in particular of donor vascular endothelium. Promoters are generally tested in transgenic mice before generating transgenic pigs. Several promoters have been used to drive endothelial cell-specific expression in mice but none have yet been tested in pigs. We compared the promoters of three human genes that are predominantly expressed in vascular endothelium: intercellular adhesion molecule 2 (ICAM-2), platelet endothelial cell adhesion molecule 1 (PECAM-1) and endoglin. Expression of human complement regulatory proteins (hCRPs), directed by each of the promoters in mice, was largely restricted to vascular endothelium and leukocyte subpopulations. However, expression from the PECAM-1 promoter was weak in liver and non-uniform in the small vessels of heart, kidney, and lung. Conversely, expression from the endoglin promoter was consistently strong in the small vessels of these organs but was absent in larger vessels. The ICAM-2 promoter, which produced strong and uniform endothelial expression in all organs examined, was therefore used to generate hCRP transgenic pigs. Leukocytes from 57 pigs containing at least one intact transgene were tested for transgene expression by flow cytometry. Forty-seven of these transgenic pigs were further analyzed by immunohistochemical staining of liver biopsies, and 18 by staining of heart and kidney sections. Only two of the pigs showed expression, which appeared to be restricted to vascular endothelium in heart and kidney but was markedly weaker than in transgenic mice produced with the same batch of DNA. Thus, in this case, promoter performance in mice and pigs was not equivalent. The weak expression driven by the human ICAM-2 promoter in pigs relative to mice suggests the need for additional regulatory elements to achieve species-specific gene expression in pigs.


Assuntos
Antígenos CD/genética , Moléculas de Adesão Celular/genética , Endotélio Vascular/fisiologia , Regulação da Expressão Gênica/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Regiões Promotoras Genéticas , Molécula 1 de Adesão de Célula Vascular/genética , Animais , Animais Geneticamente Modificados , Aorta , Vasos Sanguíneos/imunologia , Antígenos CD59/análise , Antígenos CD59/genética , Células COS , Gatos , Células Cultivadas , Chlorocebus aethiops , Endoglina , Endotélio Vascular/imunologia , Regulação da Expressão Gênica/imunologia , Humanos , Camundongos , Camundongos Transgênicos , Receptores de Superfície Celular , Suínos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...