Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evolution ; 78(6): 1054-1066, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38441178

RESUMO

Bird song is a classic example of a sexually selected trait, but much of the work relating individual song components to fitness has not accounted for song typically being composed of multiple, often-correlated components, necessitating a multivariate approach. We explored the role of sexual selection in shaping the complex male song of house wrens (Troglodytes aedon) by simultaneously relating its multiple components to fitness using multivariate selection analysis, which is widely used in insect and anuran studies but not in birds. The analysis revealed significant variation in the form and strength of selection acting on song across different selection episodes, from nest-site defense to recruitment of offspring to the breeding population. Males that sang more song typically employed in close communication sired more offspring that were subsequently recruited to the breeding population than those that sang more far-communication song. However, this relationship was not consistent across earlier selection episodes, as evidenced by non-linear selection acting on these song components in other contexts. Collectively, our results present a complex picture of multivariate selection on male song structure that would not be evident using univariate approaches and suggest possible trade-offs within and among song components at different points of the breeding season.


Assuntos
Aves Canoras , Vocalização Animal , Animais , Masculino , Aves Canoras/fisiologia , Aves Canoras/genética , Seleção Genética , Migração Animal , Feminino , Seleção Sexual
2.
Data Brief ; 53: 110073, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38317726

RESUMO

Magnetotactic bacteria (MTB) are diverse prokaryotes characterized by their ability to generate biogenic magnetic iron crystals. MTB are ubiquitous across aquatic environments, and growing evidence has indicated they may be present in association with animal microbiomes. Unfortunately, they are difficult to culture in vitro and more studies understanding their biogeographical distribution and ecological roles are needed. To provide data regarding the patterns of diversity and distribution of MTB, we screened the entire Sequence Read Archive (SRA) from the National Center for Biotechnology Information for DNA sequencing reads matching known MTB taxa. The dataset summarizes the count of reads assigned to MTB from more than 26 million SRA accessions comprising approximately 80 petabases (7.98 × 1016) of DNA. More than 396 million DNA sequencing reads were assigned to 214 MTB taxa in 691,086 (2.65 %) SRA accessions. The final dataset can be utilized by researchers to narrow their efforts in examination of both environmental and ecological roles of specific MTB or to identify potential host organisms. These data will be instrumental to further elucidating the importance and utility of these enigmatic bacteria.

3.
Mitochondrial DNA B Resour ; 8(7): 756-759, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37475776

RESUMO

In this study we sequenced and annotated the complete mitochondrial genome of the invasive reptile parasite Raillietiella orientalis using Illumina DNA sequencing. The length of the mitogenome was 15,320 bp and had a GC content of 33.1%. The mitogenome contained 13 protein-coding genes, two ribosomal RNA genes, and 22 tRNA genes, the order of which was diagnostic of Pancrustacean mitogenomes. A phylogenetic tree constructed from the 13 protein-coding genes of R. orientalis and 26 other Pancrustacean mitogenomes supported the placement of R. orientalis as part of the monophyletic subclass Pentastomida within the Maxillopoda and sister to the subclass Branchiura.

4.
Microbiol Resour Announc ; 12(7): e0009323, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37358454

RESUMO

Ophidiomyces ophidiicola is a globally distributed fungal pathogen of snakes. This study reports genome assemblies for three novel isolates that were derived from hosts originating in the United States, Germany, and Canada. The assemblies have a mean length of 21.4 Mbp, with coverage of 116.7×, and will contribute to wildlife disease research.

5.
J Hered ; 113(5): 491-499, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35930593

RESUMO

Genetic admixture is a biological event inherent to genetic rescue programs aimed at the long-term conservation of endangered wildlife. Although the success of such programs can be measured by the increase in genetic diversity and fitness of subsequent admixed individuals, predictions supporting admixture costs to fitness due to the introduction of novel deleterious alleles are necessary. Here, we analyzed nonsynonymous variation from conserved genes to quantify and compare levels of mutation load (i.e. proportion of deleterious alleles and genotypes carrying these alleles) among endangered Florida panthers and non-endangered Texas pumas. Specifically, we used canonical (i.e. non-admixed) Florida panthers, Texas pumas, and F1 (canonical Florida × Texas) panthers dating from a genetic rescue program and Everglades National Park panthers with Central American ancestry resulting from an earlier admixture event. We found neither genetic drift nor selection significantly reduced overall proportions of deleterious alleles in the severely bottlenecked canonical Florida panthers. Nevertheless, the deleterious alleles identified were distributed into a disproportionately high number of homozygous genotypes due to close inbreeding in this group. Conversely, admixed Florida panthers (either with Texas or Central American ancestry) presented reduced levels of homozygous genotypes carrying deleterious alleles but increased levels of heterozygous genotypes carrying these variants relative to canonical Florida panthers. Although admixture is likely to alleviate the load of standing deleterious variation present in homozygous genotypes, our results suggest that introduced novel deleterious alleles (temporarily present in heterozygous state) in genetically rescued populations could potentially be expressed in subsequent generations if their effective sizes remain small.


Assuntos
Puma , Humanos , Animais , Puma/genética , Endogamia , Animais Selvagens , Heterozigoto , Mutação , Variação Genética
6.
Biol Methods Protoc ; 6(1): bpab017, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34595352

RESUMO

The software Treemix has become extensively used to estimate the number of migration events, or edges (m), on population trees from genome-wide allele frequency data. However, the appropriate number of edges to include remains unclear. Here, I show that an optimal value of m can be inferred from the second-order rate of change in likelihood (Δm) across incremental values of m. Repurposed from its original use to estimate the number of population clusters in the software Structure (ΔK), I show using simulated populations that Δm performs equally as well as current recommendations for Treemix. A demonstration of an empirical dataset from domestic dogs indicates that this method may be preferable in large, complex population histories and can prioritize migration events for subsequent investigation. The method has been implemented in a freely available R package called "OptM" and as a web application (https://rfitak.shinyapps.io/OptM/) to interface directly with the output files of Treemix.

7.
Artigo em Inglês | MEDLINE | ID: mdl-32607762

RESUMO

Diverse animals use Earth's magnetic field to guide their movements, but the neural and molecular mechanisms underlying the magnetic sense remain enigmatic. One hypothesis is that particles of the mineral magnetite (Fe3O4) provide the basis of magnetoreception. Here we examined gene expression in the central nervous system of a magnetically sensitive invertebrate, the Caribbean spiny lobster (Panulirus argus), after applying a magnetic pulse known to alter magnetic orientation behavior. Numerous genes were differentially expressed in response to the pulse, including 647 in the brain, 1256 in the subesophageal ganglion, and 712 in the thoracic ganglia. Many such genes encode proteins linked to iron regulation, oxidative stress, and immune response, consistent with possible impacts of a magnetic pulse on magnetite-based magnetoreceptors. Additionally, however, altered expression also occurred for numerous genes with no apparent link to magnetoreception, including genes encoding proteins linked to photoreception, carbohydrate and hormone metabolism, and other physiological processes. Overall, the results are consistent with the magnetite hypothesis of magnetoreception, yet also reveal that in spiny lobsters, a strong pulse altered expression of > 10% of all expressed genes, including many seemingly unrelated to sensory processes. Thus, caution is required when interpreting the effects of magnetic pulses on animal behavior.


Assuntos
Palinuridae/efeitos da radiação , Animais , Comportamento Animal/efeitos da radiação , Região do Caribe , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/efeitos da radiação , Perfilação da Expressão Gênica , Campos Magnéticos , Orientação/fisiologia , Palinuridae/genética , Palinuridae/metabolismo , Transcriptoma/efeitos da radiação
8.
Proc Natl Acad Sci U S A ; 117(31): 18574-18581, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32661155

RESUMO

Many vertebrates have distinctive blue-green bones and other tissues due to unusually high biliverdin concentrations-a phenomenon called chlorosis. Despite its prevalence, the biochemical basis, biology, and evolution of chlorosis are poorly understood. In this study, we show that the occurrence of high biliverdin in anurans (frogs and toads) has evolved multiple times during their evolutionary history, and relies on the same mechanism-the presence of a class of serpin family proteins that bind biliverdin. Using a diverse combination of techniques, we purified these serpins from several species of nonmodel treefrogs and developed a pipeline that allowed us to assemble their complete amino acid and nucleotide sequences. The described proteins, hereafter named biliverdin-binding serpins (BBS), have absorption spectra that mimic those of phytochromes and bacteriophytochromes. Our models showed that physiological concentration of BBSs fine-tune the color of the animals, providing the physiological basis for crypsis in green foliage even under near-infrared light. Additionally, we found that these BBSs are most similar to human glycoprotein alpha-1-antitrypsin, but with a remarkable functional diversification. Our results present molecular and functional evidence of recurrent evolution of chlorosis, describe a biliverdin-binding protein in vertebrates, and introduce a function for a member of the serpin superfamily, the largest and most ubiquitous group of protease inhibitors.


Assuntos
Anuros/fisiologia , Biliverdina/metabolismo , Serpinas/metabolismo , Pigmentação da Pele/fisiologia , Animais , Anuros/classificação , Anuros/genética , Biliverdina/química , Mimetismo Biológico/fisiologia , Serpinas/química , Serpinas/genética , Pigmentação da Pele/genética
9.
Behav Processes ; 172: 104058, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31954808

RESUMO

Magnetoreception remains one of the most enigmatic of animal senses. Rainbow trout (Oncorhynchus mykiss) represent an ideal species to study this sense, as magnetoreception based upon microscopic particles of magnetite is suspected to play an important role in their orientation and navigation. Here we found that compared with controls, a magnetic pulse (a treatment commonly used to demonstrate magnetite-based magnetoreception) can induce orientation behavior in juvenile rainbow trout on a specific experimental day. Multiple circular-linear regression also indicated that this effect could at least be partially explained by daily variation in solar electromagnetic activity (i.e., sunspot count and disturbance storm time index). These results are consistent with magnetite-based magnetoreception in rainbow trout and suggest that 1) solar activity may impact magnetic orientation and 2) researchers should be cognizant of its potential consequences on studies of magnetoreception.


Assuntos
Fenômenos Magnéticos , Oncorhynchus mykiss , Orientação Espacial , Animais
10.
G3 (Bethesda) ; 9(11): 3531-3536, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31519748

RESUMO

In the mid-1990s, the population size of Florida panthers became so small that many individuals manifested traits associated with inbreeding depression (e.g., heart defects, cryptorchidism, high pathogen-parasite load). To mitigate these effects, pumas from Texas were introduced into South Florida to augment genetic variation in Florida panthers. In this study, we report a de novo puma genome assembly and annotation after resequencing 10 individual genomes from partial Florida-Texas-F1 trios. The final genome assembly consisted of ∼2.6 Gb and 20,561 functionally annotated protein-coding genes. Foremost, expanded gene families were associated with neuronal and embryological development, whereas contracted gene families were associated with olfactory receptors. Despite the latter, we characterized 17 positively selected genes related to the refinement of multiple sensory perceptions, most notably to visual capabilities. Furthermore, genes under positive selection were enriched for the targeting of proteins to the endoplasmic reticulum, degradation of mRNAs, and transcription of viral genomes. Nearly half (48.5%) of ∼6.2 million SNPs analyzed in the total sample set contained putative unique Texas alleles. Most of these alleles were likely inherited to subsequent F1 Florida panthers, as these individuals manifested a threefold increase in observed heterozygosity with respect to their immediate, canonical Florida panther predecessors. Demographic simulations were consistent with a recent colonization event in North America by a small number of founders from South America during the last glacial period. In conclusion, we provide an extensive set of genomic resources for pumas and elucidate the genomic effects of genetic rescue on this iconic conservation success story.


Assuntos
Conservação dos Recursos Naturais , Genoma , Puma/genética , Animais , Hibridização Genômica Comparativa , Variação Genética
11.
J Hered ; 110(3): 261-274, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067326

RESUMO

The outbreak and transmission of disease-causing pathogens are contributing to the unprecedented rate of biodiversity decline. Recent advances in genomics have coalesced into powerful tools to monitor, detect, and reconstruct the role of pathogens impacting wildlife populations. Wildlife researchers are thus uniquely positioned to merge ecological and evolutionary studies with genomic technologies to exploit unprecedented "Big Data" tools in disease research; however, many researchers lack the training and expertise required to use these computationally intensive methodologies. To address this disparity, the inaugural "Genomics of Disease in Wildlife" workshop assembled early to mid-career professionals with expertise across scientific disciplines (e.g., genomics, wildlife biology, veterinary sciences, and conservation management) for training in the application of genomic tools to wildlife disease research. A horizon scanning-like exercise, an activity to identify forthcoming trends and challenges, performed by the workshop participants identified and discussed 5 themes considered to be the most pressing to the application of genomics in wildlife disease research: 1) "Improving communication," 2) "Methodological and analytical advancements," 3) "Translation into practice," 4) "Integrating landscape ecology and genomics," and 5) "Emerging new questions." Wide-ranging solutions from the horizon scan were international in scope, itemized both deficiencies and strengths in wildlife genomic initiatives, promoted the use of genomic technologies to unite wildlife and human disease research, and advocated best practices for optimal use of genomic tools in wildlife disease projects. The results offer a glimpse of the potential revolution in human and wildlife disease research possible through multi-disciplinary collaborations at local, regional, and global scales.


Assuntos
Doenças dos Animais/etiologia , Animais Selvagens , Genômica , Pesquisa , Doenças dos Animais/epidemiologia , Doenças dos Animais/transmissão , Animais , Biodiversidade , Evolução Biológica , Biologia Computacional/métodos , Suscetibilidade a Doenças , Ecologia , Meio Ambiente , Genoma , Genômica/métodos , Interações Hospedeiro-Patógeno/genética , Humanos
12.
Proc Biol Sci ; 286(1897): 20182929, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30963849

RESUMO

Coleoid cephalopods show unique morphological and neural novelties, such as arms with tactile and chemosensory suckers and a large complex nervous system. The evolution of such cephalopod novelties has been attributed at a genomic level to independent gene family expansions, yet the exact association and the evolutionary timing remain unclear. In the octopus genome, one such expansion occurred in the G-protein-coupled receptors (GPCRs) repertoire, a superfamily of proteins that mediate signal transduction. Here, we assessed the evolutionary history of this expansion and its relationship with cephalopod novelties. Using phylogenetic analyses, at least two cephalopod- and two octopus-specific GPCR expansions were identified. Signatures of positive selection were analysed within the four groups, and the locations of these sequences in the Octopus bimaculoides genome were inspected. Additionally, the expression profiles of cephalopod GPCRs across various tissues were extracted from available transcriptomic data. Our results reveal the evolutionary history of cephalopod GPCRs. Unexpanded cephalopod GPCRs shared with other bilaterians were found to be mainly nervous tissue specific. By contrast, duplications that are shared between octopus and the bobtail squid or specific to the octopus' lineage generated copies with divergent expression patterns devoted to tissues outside of the brain. The acquisition of novel expression domains was accompanied by gene order rearrangement through either translocation or duplication and gene loss. Lastly, expansions showed signs of positive selection and some were found to form tandem clusters with shared conserved expression profiles in cephalopod innovations such as the axial nerve cord. Altogether, our results contribute to the understanding of the molecular and evolutionary history of signal transduction and provide insights into the role of this expansion during the emergence of cephalopod novelties and/or adaptations.


Assuntos
Cefalópodes/genética , Evolução Molecular , Genoma , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/genética , Animais , Receptores Acoplados a Proteínas G/metabolismo , Transcriptoma
13.
J Exp Biol ; 221(Pt 23)2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30322978

RESUMO

A major goal of sensory ecology is to identify factors that underlie sensory-trait variation. One open question centers on why fishes show the greatest diversity among vertebrates in their capacity to detect color (i.e. spectral sensitivity). Over the past several decades, λmax values (photoreceptor class peak sensitivity) and chromacy (photoreceptor class number) have been cataloged for hundreds of fish species, yet the ecological basis of this diversity and the functional significance of high chromacy levels (e.g. tetra- and pentachromacy) remain unclear. In this study, we examined phylogenetic, physiological and ecological patterns of spectral sensitivity of ray-finned fishes (Actinoptergyii) via a meta-analysis of data compiled from 213 species. Across the fishes sampled, our results indicate that trichromacy is most common, ultraviolet λmax values are not found in monochromatic or dichromatic species, and increasing chromacy, including from tetra- to pentachromacy, significantly increases spectral sensitivity range. In an ecological analysis, multivariate phylogenetic latent liability modeling was performed to analyze correlations between chromacy and five hypothesized predictors (depth, habitat, diet, body coloration, body size). In a model not accounting for phylogenetic relatedness, each predictor with the exception of habitat significantly correlated with chromacy: a positive relationship in body color and negative relationships with body size, diet and depth. However, after phylogenetic correction, the only remaining correlated predictor was depth. The findings of this study indicate that phyletic heritage and depth are important factors in fish spectral sensitivity and impart caution about excluding phylogenetic comparative methods in studies of sensory trait variation.


Assuntos
Visão de Cores/fisiologia , Ecossistema , Peixes/classificação , Peixes/fisiologia , Adaptação Biológica , Animais , Tamanho Corporal , Dieta , Filogenia
14.
Biol Lett ; 14(6)2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29875210

RESUMO

The ability to perceive the Earth's magnetic field, or magnetoreception, exists in numerous animals. Although the mechanism underlying magnetoreception has not been clearly established in any species, in salmonid fish, it is hypothesized to occur by means of crystals of magnetite associated with nervous tissue such as the brain, olfactory organ or retina. In this study, rainbow trout (Oncorhynchus mykiss) were exposed to a brief magnetic pulse known to disrupt magnetic orientation behaviour in several animals. Changes in gene expression induced by the pulse were then examined in the retina. Analyses indicated that the pulse elicited differential expression of only a single gene, gamma-crystallin M3-like (crygm3). The near absence of an effect of the magnetic pulse on gene expression in the retina stands in sharp contrast to a recent study in which 181 genes were differentially expressed in brain tissue of O. mykiss after exposure to the same pulse. Overall, our results suggest either that magnetite-based magnetoreceptors in trout are not located in the retina, or else that they are unaffected by magnetic pulses that can disrupt magnetic orientation behaviour in animals.


Assuntos
Campos Magnéticos , Oncorhynchus mykiss/genética , Retina , Animais , Perfilação da Expressão Gênica , Oncorhynchus mykiss/metabolismo , Análise de Sequência de RNA
15.
J Hered ; 109(4): 372-383, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29757430

RESUMO

The Mexican gray wolf (Canis lupus baileyi) was historically distributed throughout the southwestern United States and northern Mexico. Extensive predator removal campaigns during the early 20th century, however, resulted in its eventual extirpation by the mid 1980s. At this time, the Mexican wolf existed only in 3 separate captive lineages (McBride, Ghost Ranch, and Aragón) descended from 3, 2, and 2 founders, respectively. These lineages were merged in 1995 to increase the available genetic variation, and Mexican wolves were reintroduced into Arizona and New Mexico in 1998. Despite the ongoing management of the Mexican wolf population, it has been suggested that a proportion of the Mexican wolf ancestry may be recently derived from hybridization with domestic dogs. In this study, we genotyped 87 Mexican wolves, including individuals from all 3 captive lineages and cross-lineage wolves, for more than 172000 single nucleotide polymorphisms. We identified levels of genetic variation consistent with the pedigree record and effects of genetic rescue. To identify the potential to detect hybridization with domestic dogs, we compared our Mexican wolf genotypes with those from studies of domestic dogs and other gray wolves. The proportion of Mexican wolf ancestry assigned to domestic dogs was only between 0.06% (SD 0.23%) and 7.8% (SD 1.0%) for global and local ancestry estimates, respectively; and was consistent with simulated levels of incomplete lineage sorting. Overall, our results suggested that Mexican wolves lack biologically significant ancestry with dogs and have useful implications for the conservation and management of this endangered wolf subspecies.


Assuntos
Conservação dos Recursos Naturais , Variação Genética , Genoma/genética , Polimorfismo de Nucleotídeo Único/genética , Lobos/genética , Animais , Arizona , Genótipo , Técnicas de Genotipagem/veterinária , México , New Mexico , Filogenia , Lobos/classificação
16.
Artigo em Inglês | MEDLINE | ID: mdl-29492668

RESUMO

Across diverse taxa, an increasing number of photoreceptive systems are being discovered in tissues outside of the eye, such as in the skin. Dermal photoreception is believed to serve a variety of functions, including rapid color change via specialized cells called chromatophores. In vitro studies of this system among color-changing fish have suggested the use of a phototransduction signaling cascade that fundamentally differs from that of the retina. Thus, the goal of this study was to identify phototransduction genes and compare their expression in the retina and skin of a color-changing fish, the hogfish Lachnolaimus maximus. De novo transcriptomics revealed the expression of genes that may underlie distinct, yet complete phototransduction cascades in L. maximus retina and skin. In contrast to the five visual opsin genes and cGMP-dependent phototransduction components expressed in the retina of L. maximus, only a single short-wavelength sensitive opsin (SWS1) and putative cAMP-dependent phototransduction components were expressed in the skin. These data suggest a separate evolutionary history of phototransduction in the retina and skin of certain vertebrates and, for the first time, indicate an expression repertoire of genes that underlie a non-retinal phototransduction pathway in the skin of a color-changing fish.


Assuntos
Proteínas de Peixes/genética , Perciformes/genética , Retina/metabolismo , Pigmentação da Pele/genética , Pele/metabolismo , Transcriptoma , Visão Ocular/genética , Adaptação Fisiológica , Animais , Evolução Molecular , Feminino , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica , Perciformes/metabolismo , Opsinas de Bastonetes/genética , Opsinas de Bastonetes/metabolismo
17.
Sci Rep ; 7(1): 9970, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855525

RESUMO

The genus Camelus is an interesting model to study adaptive evolution in the mitochondrial genome, as the three extant Old World camel species inhabit hot and low-altitude as well as cold and high-altitude deserts. We sequenced 24 camel mitogenomes and combined them with three previously published sequences to study the role of natural selection under different environmental pressure, and to advance our understanding of the evolutionary history of the genus Camelus. We confirmed the heterogeneity of divergence across different components of the electron transport system. Lineage-specific analysis of mitochondrial protein evolution revealed a significant effect of purifying selection in the concatenated protein-coding genes in domestic Bactrian camels. The estimated dN/dS < 1 in the concatenated protein-coding genes suggested purifying selection as driving force for shaping mitogenome diversity in camels. Additional analyses of the functional divergence in amino acid changes between species-specific lineages indicated fixed substitutions in various genes, with radical effects on the physicochemical properties of the protein products. The evolutionary time estimates revealed a divergence between domestic and wild Bactrian camels around 1.1 [0.58-1.8] million years ago (mya). This has major implications for the conservation and management of the critically endangered wild species, Camelus ferus.


Assuntos
Camelus/genética , DNA Mitocondrial/química , DNA Mitocondrial/genética , Evolução Molecular , Variação Genética , Seleção Genética , Análise de Sequência de DNA , Adaptação Biológica , Animais
18.
J Exp Biol ; 220(Pt 21): 3878-3882, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28860118

RESUMO

In studies of animal orientation, data are often represented as directions that can be analyzed using circular statistical methods. Although several circular statistical tests exist to detect the presence of a mean direction, likelihood-based approaches may offer advantages in hypothesis testing - especially when data are multimodal. Unfortunately, likelihood-based inference in animal orientation remains rare. Here, we discuss some of the assumptions and limitations of common circular tests and report a new R package called CircMLE to implement the maximum likelihood analysis of circular data. We illustrate the use of this package on both simulated datasets and an empirical example dataset in Chinook salmon (Oncorhynchus tshawytscha). Our software provides a convenient interface that facilitates the use of model-based approaches in animal orientation studies.


Assuntos
Orientação Espacial , Salmão/fisiologia , Animais , Funções Verossimilhança , Modelos Biológicos
19.
Genome Announc ; 5(30)2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28751397

RESUMO

Ophidiomyces ophiodiicola, which belongs to the order Onygenales, is an emerging fungal pathogen of snakes in the United States. This study reports the 21.9-Mb genome sequence of an isolate of this reptilian pathogen obtained from a black racer snake in Pennsylvania.

20.
Biol Lett ; 13(4)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28446619

RESUMO

Diverse animals use Earth's magnetic field in orientation and navigation, but little is known about the molecular mechanisms that underlie magnetoreception. Recent studies have focused on two possibilities: (i) magnetite-based receptors; and (ii) biochemical reactions involving radical pairs. We used RNA sequencing to examine gene expression in the brain of rainbow trout (Oncorhynchus mykiss) after exposure to a magnetic pulse known to disrupt magnetic orientation behaviour. We identified 181 differentially expressed genes, including increased expression of six copies of the frim gene, which encodes a subunit of the universal iron-binding and trafficking protein ferritin. Functions linked to the oxidative effects of free iron (e.g. oxidoreductase activity, transition metal ion binding, mitochondrial oxidative phosphorylation) were also affected. These results are consistent with the hypothesis that a magnetic pulse alters or damages magnetite-based receptors and/or other iron-containing structures, which are subsequently repaired or replaced through processes involving ferritin. Additionally, some genes that function in the development and repair of photoreceptive structures (e.g. crggm3, purp, prl, gcip, crabp1 and pax6) were also differentially expressed, raising the possibility that a magnetic pulse might affect structures and processes unrelated to magnetite-based magnetoreceptors.


Assuntos
Oncorhynchus mykiss , Animais , Sequência de Bases , Regulação da Expressão Gênica , Campos Magnéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...