Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Mol Imaging Biol ; 22(3): 653-664, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31482415

RESUMO

PURPOSE: Hypoxia is linked to aggressiveness, resistance to therapy, and poor prognosis of pancreatic tumors. Liposomal irinotecan (nal-IRI, ONIVYDE®) has shown potential in reducing hypoxia in the HT29 colorectal cancer model, and here, we investigate its therapeutic activity and ability to modulate hypoxia in patient-derived orthotopic tumor models of pancreatic cancer. PROCEDURES: Mice were randomized into nal-IRI treated and untreated controls. Magnetic resonance imaging was used for monitoring treatment efficacy, positron emission tomography (PET) imaging with F-18-labelled fluoroazomycinarabinoside ([18F]FAZA) for tumor hypoxia quantification, and F-18-labelled fluorothymidine ([18F]FLT) for tumor cell proliferation. RESULTS: The highly hypoxic OCIP51 tumors showed significant response following nal-IRI treatment compared with the less hypoxic OCIP19 tumors. [18F]FAZA-PET detected significant hypoxia reduction in treated OCIP51 tumors, 8 days before significant changes in tumor volume. OCIP19 tumors also responded to therapy, although tumor volume control was not accompanied by any reduction in [18F]FAZA uptake. In both models, no differences were observable in [18F]FLT uptake in treated tumors compared with control mice. CONCLUSIONS: Hypoxia modulation may play a role in nal-IRI's mechanism of action. Nal-IRI demonstrated greater anti-tumor activity in the more aggressive and hypoxic tumor model. Furthermore, hypoxia imaging provided early prediction of treatment response.


Assuntos
Hipóxia Celular/fisiologia , Irinotecano/administração & dosagem , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Tomografia por Emissão de Pósitrons/métodos , Animais , Feminino , Radioisótopos de Flúor/química , Radioisótopos de Flúor/farmacocinética , Lipossomos/administração & dosagem , Lipossomos/química , Estudos Longitudinais , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Nitroimidazóis/química , Nitroimidazóis/farmacocinética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Inibidores da Topoisomerase I/farmacologia , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Anticancer Drugs ; 28(10): 1086-1096, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28857767

RESUMO

Liposomal irinotecan (irinotecan liposome injection, nal-IRI), a liposomal formulation of irinotecan, is designed for extended circulation relative to irinotecan and for exploiting discontinuous tumor vasculature for enhanced drug delivery to tumors. Following tumor deposition, nal-IRI is taken up by phagocytic cells followed by irinotecan release and conversion to its active metabolite, SN-38. Sustained inhibition of topoisomerase 1 by extended SN-38 exposure as a result of delivery by nal-IRI is hypothesized to enable superior antitumor activity compared with traditional topoisomerase 1 inhibitors such as conventional irinotecan and topotecan. We evaluated the antitumor activity of nal-IRI compared with irinotecan and topotecan in preclinical models of small-cell lung cancer (SCLC) including in a model pretreated with carboplatin and etoposide, a first-line regimen used in SCLC. Nal-IRI demonstrated antitumor activity in xenograft models of SCLC at clinically relevant dose levels, and resulted in complete or partial responses in DMS-53, DMS-114, and NCI-H1048 cell line-derived models as well as in three patient-derived xenograft models. The antitumor activity of nal-IRI was superior to that of topotecan in all models tested, which generally exhibited limited control of tumor growth and was superior to irinotecan in four out of five models. Further, nal-IRI demonstrated antitumor activity in tumors that progressed following treatment with topotecan or irinotecan, and demonstrated significantly greater antitumor activity than both topotecan and irinotecan in NCI-H1048 tumors that had progressed on previous carboplatin plus etoposide treatment. These results support the clinical development of nal-IRI in patients with SCLC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Camptotecina/análogos & derivados , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Inibidores da Topoisomerase I/administração & dosagem , Animais , Camptotecina/administração & dosagem , Linhagem Celular Tumoral , DNA Topoisomerases Tipo I/metabolismo , Feminino , Humanos , Irinotecano , Lipossomos/administração & dosagem , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Distribuição Aleatória , Carcinoma de Pequenas Células do Pulmão/enzimologia , Topotecan/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cancer Chemother Pharmacol ; 79(3): 603-610, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28233053

RESUMO

PURPOSE: Preclinical activity of irinotecan has been seen in glioma models, but only modest efficacy has been noted in clinical studies, perhaps related to drug distribution and/or pharmacokinetic limitations. In preclinical testing, irinotecan liposome injection (nal-IRI) results in prolongation of drug exposure and higher tissue levels of drug due to slower metabolism and the effect of enhanced permeability and retention. The objective of the current study was to assess the safety and pharmacokinetics (PK) of nal-IRI and to determine the maximum tolerated dose (MTD) in patients with recurrent high-grade glioma stratified based on UGT1A1 genotyping. METHODS: This phase I study stratified patients with recurrent high-grade glioma into 2 groups by UGT1A1 status: homozygous WT ("WT") vs heterozygous WT/*28 ("HT"). Patients who were homozygous *28 were ineligible. The design was a standard 3 + 3 phase I design. WT patients were started at 120 mg/m2 intravenously every 3 weeks with dose increases in 60 mg/m2 increments. HT patients were started at 60 mg/m2, with dose increases in 30 mg/m2 increments. The assessment period for dose-limiting toxicity was 1 cycle (21 days). RESULTS: In the WT cohort (n = 16), the MTD was 120 mg/m2. In the HT cohort (n = 18), the MTD was 150 mg/m2. Dose-limiting toxicity in both cohorts included diarrhea, some with associated dehydration and/or fatigue. PK results were comparable to those seen in other PK studies of nal-IRI; UGT1A1*28 genotype (WT vs. HT) did not affect PK parameters. CONCLUSIONS: Nal-IRI had no unexpected toxicities when given intravenously. Of note, UGT1A1 genotype did not correlate with toxicity or affect PK profile.


Assuntos
Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Camptotecina/análogos & derivados , Glioma/tratamento farmacológico , Adulto , Idoso , Antineoplásicos Fitogênicos/efeitos adversos , Camptotecina/efeitos adversos , Camptotecina/farmacocinética , Camptotecina/uso terapêutico , Estudos de Coortes , Intervalo Livre de Doença , Relação Dose-Resposta a Droga , Feminino , Genótipo , Glucuronosiltransferase/genética , Humanos , Injeções Intravenosas , Irinotecano , Lipossomos , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade
5.
Clin Cancer Res ; 23(14): 3638-3648, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28159813

RESUMO

Purpose: To determine whether deposition characteristics of ferumoxytol (FMX) iron nanoparticles in tumors, identified by quantitative MRI, may predict tumor lesion response to nanoliposomal irinotecan (nal-IRI).Experimental Design: Eligible patients with previously treated solid tumors had FMX-MRI scans before and following (1, 24, and 72 hours) FMX injection. After MRI acquisition, R2* signal was used to calculate FMX levels in plasma, reference tissue, and tumor lesions by comparison with a phantom-based standard curve. Patients then received nal-IRI (70 mg/m2 free base strength) biweekly until progression. Two percutaneous core biopsies were collected from selected tumor lesions 72 hours after FMX or nal-IRI.Results: Iron particle levels were quantified by FMX-MRI in plasma, reference tissues, and tumor lesions in 13 of 15 eligible patients. On the basis of a mechanistic pharmacokinetic model, tissue permeability to FMX correlated with early FMX-MRI signals at 1 and 24 hours, while FMX tissue binding contributed at 72 hours. Higher FMX levels (ranked relative to median value of multiple evaluable lesions from 9 patients) were significantly associated with reduction in lesion size by RECIST v1.1 at early time points (P < 0.001 at 1 hour and P < 0.003 at 24 hours FMX-MRI, one-way ANOVA). No association was observed with post-FMX levels at 72 hours. Irinotecan drug levels in lesions correlated with patient's time on treatment (Spearman ρ = 0.7824; P = 0.0016).Conclusions: Correlation between FMX levels in tumor lesions and nal-IRI activity suggests that lesion permeability to FMX and subsequent tumor uptake may be a useful noninvasive and predictive biomarker for nal-IRI response in patients with solid tumors. Clin Cancer Res; 23(14); 3638-48. ©2017 AACR.


Assuntos
Camptotecina/análogos & derivados , Óxido Ferroso-Férrico/administração & dosagem , Neoplasias/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Camptotecina/administração & dosagem , Camptotecina/sangue , Camptotecina/química , Intervalo Livre de Doença , Feminino , Óxido Ferroso-Férrico/sangue , Óxido Ferroso-Férrico/química , Humanos , Irinotecano , Lipossomos/administração & dosagem , Lipossomos/química , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Nanopartículas/administração & dosagem , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Projetos Piloto
6.
Mol Cancer Ther ; 14(7): 1625-36, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25911688

RESUMO

Although EGFR is a validated therapeutic target across multiple cancer indications, the often modest clinical responses to current anti-EGFR agents suggest the need for improved therapeutics. Here, we demonstrate that signal amplification driven by high-affinity EGFR ligands limits the capacity of monoclonal anti-EGFR antibodies to block pathway signaling and cell proliferation and that these ligands are commonly coexpressed with low-affinity EGFR ligands in epithelial tumors. To develop an improved antibody therapeutic capable of overcoming high-affinity ligand-mediated signal amplification, we used a network biology approach comprised of signaling studies and computational modeling of receptor-antagonist interactions. Model simulations suggested that an oligoclonal antibody combination may overcome signal amplification within the EGFR:ERK pathway driven by all EGFR ligands. Based on this, we designed MM-151, a combination of three fully human IgG1 monoclonal antibodies that can simultaneously engage distinct, nonoverlapping epitopes on EGFR with subnanomolar affinities. In signaling studies, MM-151 antagonized high-affinity EGFR ligands more effectively than cetuximab, leading to an approximately 65-fold greater decrease in signal amplification to ERK. In cell viability studies, MM-151 demonstrated antiproliferative activity against high-affinity EGFR ligands, either singly or in combination, while cetuximab activity was largely abrogated under these conditions. We confirmed this finding both in vitro and in vivo in a cell line model of autocrine high-affinity ligand expression. Together, these preclinical studies provide rationale for the clinical study of MM-151 and suggest that high-affinity EGFR ligand expression may be a predictive response marker that distinguishes MM-151 from other anti-EGFR therapeutics.


Assuntos
Anticorpos Monoclonais/farmacologia , Receptores ErbB/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais Humanizados , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Epitopos/imunologia , Epitopos/metabolismo , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Feminino , Humanos , Ligantes , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos SCID , Microscopia Confocal , Terapia de Alvo Molecular , Neoplasias/imunologia , Neoplasias/metabolismo
7.
Clin Cancer Res ; 21(5): 1139-50, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25733708

RESUMO

PURPOSE: To determine the pharmacokinetics and the antitumor activity in pediatric cancer models of MM-398, a nanoliposomal irinotecan (nal-IRI). EXPERIMENTAL DESIGN: Mouse plasma and tissue pharmacokinetics of nal-IRI and the current clinical formulation of irinotecan were characterized. In vivo activity of irinotecan and nal-IRI was compared in xenograft models (3 each in nu/nu mice) of Ewing's sarcoma family of tumors (EFT), neuroblastoma (NB), and rhabdomyosarcoma (RMS). SLFN11 expression was assessed by Affymetrix HuEx arrays, Taqman RT-PCR, and immunoblotting. RESULTS: Plasma and tumor concentrations of irinotecan and SN-38 (active metabolite) were approximately 10-fold higher for nal-IRI than for irinotecan. Two doses of NAL-IRI (10 mg/kg/dose) achieved complete responses maintained for >100 days in 24 of 27 EFT-xenografted mice. Event-free survival for mice with RMS and NB was significantly shorter than for EFT. High SLFN11 expression has been reported to correlate with sensitivity to DNA damaging agents; median SLFN11 mRNA expression was >100-fold greater in both EFT cell lines and primary tumors compared with NB or RMS cell lines or primary tumors. Cytotoxicity of SN-38 inversely correlated with SLFN11 mRNA expression in 20 EFT cell lines. CONCLUSIONS: In pediatric solid tumor xenografts, nal-IRI demonstrated higher systemic and tumor exposures to SN-38 and improved antitumor activity compared with the current clinical formulation of irinotecan. Clinical studies of nal-IRI in pediatric solid tumors (especially EFT) and correlative studies to determine if SLFN11 expression can serve as a biomarker to predict nal-IRI clinical activity are warranted.


Assuntos
Antineoplásicos/administração & dosagem , Camptotecina/análogos & derivados , Expressão Gênica , Lipossomos , Proteínas Nucleares/genética , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia , Sacarose/análogos & derivados , Animais , Antineoplásicos/farmacocinética , Camptotecina/administração & dosagem , Camptotecina/farmacocinética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Combinação de Medicamentos , Feminino , Humanos , Irinotecano , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Sarcoma de Ewing/tratamento farmacológico , Sarcoma de Ewing/mortalidade , Sacarose/administração & dosagem , Sacarose/farmacocinética , Distribuição Tecidual , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Cancer Res ; 74(23): 7003-13, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25273092

RESUMO

A major challenge in the clinical use of cytotoxic chemotherapeutics is maximizing efficacy in tumors while sparing normal tissue. Irinotecan is used for colorectal cancer treatment but the extent of its use is limited by toxic side effects. Liposomal delivery systems offer tools to modify pharmacokinetic and safety profiles of cytotoxic drugs. In this study, we defined parameters that maximize the antitumor activity of a nanoliposomal formulation of irinotecan (nal-IRI). In a mouse xenograft model of human colon carcinoma, nal-IRI dosing could achieve higher intratumoral levels of the prodrug irinotecan and its active metabolite SN-38 compared with free irinotecan. For example, nal-IRI administered at doses 5-fold lower than free irinotecan achieved similar intratumoral exposure of SN-38 but with superior antitumor activity. Tumor response and pharmacokinetic modeling identified the duration for which concentrations of SN-38 persisted above a critical intratumoral threshold of 120 nmol/L as determinant for antitumor activity. We identified tumor permeability and carboxylesterase activity needed for prodrug activation as critical factors in achieving longer duration of SN-38 in tumors. Simulations varying tumor permeability and carboxylesterase activity predicted a concave increase in tumor SN-38 duration, which was confirmed experimentally in 13 tumor xenograft models. Tumors in which higher SN-38 duration was achieved displayed more robust growth inhibition compared with tumors with lower SN-38 duration, confirming the importance of this factor in drug response. Overall, our work shows how liposomal encapsulation of irinotecan can safely improve its antitumor activity in preclinical models by enhancing accumulation of its active metabolite within the tumor microenvironment.


Assuntos
Antineoplásicos/farmacologia , Camptotecina/análogos & derivados , Neoplasias do Colo/tratamento farmacológico , Lipossomos/farmacologia , Pró-Fármacos/farmacologia , Animais , Camptotecina/farmacologia , Carcinoma/tratamento farmacológico , Feminino , Células HT29 , Humanos , Irinotecano , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
9.
Mol Cancer Ther ; 13(2): 410-25, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24282274

RESUMO

Although inhibition of the insulin-like growth factor (IGF) signaling pathway was expected to eliminate a key resistance mechanism for EGF receptor (EGFR)-driven cancers, the effectiveness of IGF-I receptor (IGF-IR) inhibitors in clinical trials has been limited. A multiplicity of survival mechanisms are available to cancer cells. Both IGF-IR and the ErbB3 receptor activate the PI3K/AKT/mTOR axis, but ErbB3 has only recently been pursued as a therapeutic target. We show that coactivation of the ErbB3 pathway is prevalent in a majority of cell lines responsive to IGF ligands and antagonizes IGF-IR-mediated growth inhibition. Blockade of the redundant IGF-IR and ErbB3 survival pathways and downstream resistance mechanisms was achieved with MM-141, a tetravalent bispecific antibody antagonist of IGF-IR and ErbB3. MM-141 potency was superior to monospecific and combination antibody therapies and was insensitive to variation in the ratio of IGF-IR and ErbB3 receptors. MM-141 enhanced the biologic impact of receptor inhibition in vivo as a monotherapy and in combination with the mTOR inhibitor everolimus, gemcitabine, or docetaxel, through blockade of IGF-IR and ErbB3 signaling and prevention of PI3K/AKT/mTOR network adaptation.


Assuntos
Anticorpos Biespecíficos/farmacologia , Proliferação de Células/efeitos dos fármacos , Receptor ErbB-3/antagonistas & inibidores , Receptor IGF Tipo 1/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Animais , Anticorpos Biespecíficos/administração & dosagem , Anticorpos Biespecíficos/imunologia , Anticorpos Monoclonais Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Western Blotting , Linhagem Celular Tumoral , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Docetaxel , Everolimo , Feminino , Humanos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-3/imunologia , Receptor IGF Tipo 1/imunologia , Sirolimo/administração & dosagem , Sirolimo/análogos & derivados , Serina-Treonina Quinases TOR/metabolismo , Taxoides/administração & dosagem , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
10.
Neuro Oncol ; 15(2): 189-97, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23262509

RESUMO

BACKGROUND: Liposomal drug packaging is well established as an effective means for increasing drug half-life, sustaining drug activity, and increasing drug efficacy, whether administered locally or distally to the site of disease. However, information regarding the relative effectiveness of peripheral (distal) versus local administration of liposomal therapeutics is limited. This issue is of importance with respect to the treatment of central nervous system cancer, for which the blood-brain barrier presents a significant challenge in achieving sufficient drug concentration in tumors to provide treatment benefit for patients. METHODS: We compared the anti-tumor activity and efficacy of a nanoliposomal formulation of irinotecan when delivered peripherally by vascular route with intratumoral administration by convection-enhanced delivery (CED) for treating intracranial glioblastoma xenografts in athymic mice. RESULTS: Our results show significantly greater anti-tumor activity and survival benefit from CED of nanoliposomal irinotecan. In 2 of 3 efficacy experiments, there were animal subjects that experienced apparent cure of tumor from local administration of therapy, as indicated by a lack of detectable intracranial tumor through bioluminescence imaging and histopathologic analysis. Results from investigating the effectiveness of combination therapy with nanoliposomal irinotecan plus radiation revealed that CED administration of irinotecan plus radiation conferred greater survival benefit than did irinotecan or radiation monotherapy and also when compared with radiation plus vascularly administered irinotecan. CONCLUSIONS: Our results indicate that liposomal formulation plus direct intratumoral administration of therapeutic are important for maximizing the anti-tumor effects of irinotecan and support clinical trial evaluation of this therapeutic plus route of administration combination.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Camptotecina/análogos & derivados , Sistemas de Liberação de Medicamentos , Glioblastoma/tratamento farmacológico , Lipossomos , Nanopartículas , Animais , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Camptotecina/administração & dosagem , Convecção , Vias de Administração de Medicamentos , Feminino , Glioblastoma/mortalidade , Glioblastoma/patologia , História Antiga , Humanos , Técnicas Imunoenzimáticas , Injeções Intraperitoneais , Irinotecano , Camundongos , Camundongos Nus , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Sci Signal ; 2(77): ra31, 2009 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-19567914

RESUMO

The signaling network downstream of the ErbB family of receptors has been extensively targeted by cancer therapeutics; however, understanding the relative importance of the different components of the ErbB network is nontrivial. To explore the optimal way to therapeutically inhibit combinatorial, ligand-induced activation of the ErbB-phosphatidylinositol 3-kinase (PI3K) axis, we built a computational model of the ErbB signaling network that describes the most effective ErbB ligands, as well as known and previously unidentified ErbB inhibitors. Sensitivity analysis identified ErbB3 as the key node in response to ligands that can bind either ErbB3 or EGFR (epidermal growth factor receptor). We describe MM-121, a human monoclonal antibody that halts the growth of tumor xenografts in mice and, consistent with model-simulated inhibitor data, potently inhibits ErbB3 phosphorylation in a manner distinct from that of other ErbB-targeted therapies. MM-121, a previously unidentified anticancer therapeutic designed using a systems approach, promises to benefit patients with combinatorial, ligand-induced activation of the ErbB signaling network that are not effectively treated by current therapies targeting overexpressed or mutated oncogenes.


Assuntos
Fosfatidilinositol 3-Quinases/metabolismo , Receptor ErbB-3/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais Humanizados , Receptores ErbB/metabolismo , Humanos , Ligantes , Camundongos , Fosforilação , Ligação Proteica , Receptor ErbB-3/imunologia , Transdução de Sinais , Transplante Heterólogo
12.
J Orthop Res ; 26(9): 1230-7, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18404652

RESUMO

Chondrocyte phenotype has been shown to dedifferentiate during passaged monolayer cultivation. Hence, we have investigated the expression profile of 27 chondrocyte-associated genes from both osteoarthritic cartilage tissue and healthy passaged human articular chondrocytes by quantitative real-time PCR. Our results indicate that the gene expression levels of matrix proteins and proteases in chondrocytes from monolayer culture decrease compared with those from cartilage tissue, while monolayer cultured chondrocytes from normal and osteoarthritic cartilage exhibit similar gene expression patterns. However, chondrocytic gene expression profiles were differentially altered at various stages of passage. The expression of the matrix proteins aggrecan, type II collagen, and fibromodulin inversely correlated with increasing passage number, while fibronectin and link protein exhibited a marked increase with passage. The expression of matrix proteinases MMP-3/9/13 and ADAMTS-4/5 decreased with passage, whereas proteinase inhibitors TIMP-2/3 were elevated. The cytokine IL-1 also showed increased expression with monolayer chondrocyte culture, while IGF-1 expression levels were diminished. No significant changes in TGF-beta, or the chondrogenic transcription factors Sox-9, c-fos, or c-jun were observed. Our data indicates that cultured chondrocytes undergo dedifferentiation during monolayer culture, although the gene expression level of transcription factors necessary for chondrogenesis remains unchanged. This data may prove important for the future development of more specific and efficacious cultivation techniques for human articular chondrocyte-based therapies.


Assuntos
Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Expressão Gênica , Articulação do Joelho/metabolismo , Proteínas ADAM/genética , Proteína ADAMTS4 , Proteína ADAMTS5 , Agrecanas/genética , Técnicas de Cultura de Células , Colágeno Tipo II/genética , Proteínas da Matriz Extracelular/genética , Fibromodulina , Fibronectinas/genética , Perfilação da Expressão Gênica , Humanos , Fator de Crescimento Insulin-Like I/genética , Interleucina-1/genética , Metaloproteinases da Matriz Secretadas/genética , Reação em Cadeia da Polimerase , Pró-Colágeno N-Endopeptidase/genética , Proteoglicanas/genética , RNA/isolamento & purificação , Transcrição Reversa , Inibidor Tecidual de Metaloproteinase-2/genética , Inibidor Tecidual de Metaloproteinase-3/genética , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/genética
13.
J Biol Chem ; 283(11): 6735-43, 2008 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-18086670

RESUMO

Chondrocytes regulate the composition of cartilage extracellular matrix in response to mechanical signals, but the intracellular pathways involved in mechanotransduction are still being defined. Mitogen-activated protein kinase (MAPK) pathways are activated by static and dynamic compression of cartilage, which simultaneously induce intratissue fluid flow, pressure gradients, cell, and matrix deformation. First, to determine whether cell and matrix deformation alone could induce MAPK activation, we applied dynamic shear to bovine cartilage explants. Using Western blotting, we measured ERK1/2 and p38 activation at multiple time points over 24 h. Distinct activation time courses were observed for different MAPKs: a sustained 50% increase for ERK1/2 and a delayed increase in p38 of 180%. We then investigated the role of MAPK activation in mechano-induced chondrocyte gene expression. Cartilage explants were preincubated with inhibitors of ERK1/2 and p38 activation before application of 1-24 h of three distinct mechanical stimuli relevant to in vivo loading (50% static compression, 3% dynamic compression at 0.1 Hz, or 3% dynamic shear at 0.1 Hz). mRNA levels of selected genes involved in matrix homeostasis were measured using real-time PCR and analyzed by k-means clustering to characterize the time- and load-dependent effects of the inhibitors. Most genes examined required ERK1/2 and p38 activation to be regulated by these loading regimens, including matrix proteins aggrecan and type II collagen, matrix metalloproteinases MMP13, and ADAMTS5, and transcription factors downstream of the MAPK pathway, c-Fos, and c-Jun. Thus, we demonstrated that the MAPK pathway is a central conduit for transducing mechanical forces into biological responses in cartilage.


Assuntos
Cartilagem/metabolismo , Condrócitos/metabolismo , Transcrição Gênica , Proteínas ADAM/metabolismo , Proteína ADAMTS5 , Animais , Bovinos , Sistema de Sinalização das MAP Quinases , Metaloproteinase 13 da Matriz/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Biológicos , RNA Mensageiro/metabolismo , Estresse Mecânico , Fatores de Tempo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Nat Chem Biol ; 2(9): 458-66, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16921358

RESUMO

Combinatorial control of biological processes, in which redundancy and multifunctionality are the norm, fundamentally limits the therapeutic index that can be achieved by even the most potent and highly selective drugs. Thus, it will almost certainly be necessary to use new 'targeted' pharmaceuticals in combinations. Multicomponent drugs are standard in cytotoxic chemotherapy, but their development has required arduous empirical testing. However, experimentally validated numerical models should greatly aid in the formulation of new combination therapies, particularly those tailored to the needs of specific patients. This perspective focuses on opportunities and challenges inherent in the application of mathematical modeling and systems approaches to pharmacology, specifically with respect to the idea of achieving combinatorial selectivity through use of multicomponent drugs.


Assuntos
Quimioterapia Combinada , Modelos Biológicos , Biologia de Sistemas , Retroalimentação Fisiológica
15.
J Biol Chem ; 281(34): 24095-103, 2006 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-16782710

RESUMO

Chondrocytes are subjected to a variety of biophysical forces and flows during physiological joint loading, including mechanical deformation, fluid flow, hydrostatic pressure, and streaming potentials; however, the role of these physical stimuli in regulating chondrocyte behavior is still being elucidated. To isolate the effects of these forces, we subjected intact cartilage explants to 1-24 h of continuous dynamic compression or dynamic shear loading at 0.1 Hz. We then measured the transcription levels of 25 genes known to be involved in cartilage homeostasis using real-time PCR and compared the gene expression profiles obtained from dynamic compression, dynamic shear, and our recent results on static compression amplitude and duration. Using clustering analysis, we determined that transcripts for proteins with similar function had correlated responses to loading. However, the temporal expression patterns were strongly dependent on the type of loading applied. Most matrix proteins were up-regulated by 24 h of dynamic compression or dynamic shear, but down-regulated by 24 h of 50% static compression, suggesting that cyclic matrix deformation is a key stimulator of matrix protein expression. Most matrix proteases were up-regulated by 24 h under all loading types. Transcription factors c-Fos and c-Jun maximally responded within 1 h to all loading types. Pre-incubating cartilage explants with either a chelator of intracellular calcium or an inhibitor of the cyclic AMP pathway demonstrated the involvement of both pathways in transcription induced by dynamic loading.


Assuntos
Condrócitos/fisiologia , Regulação da Expressão Gênica , Transcrição Gênica , Animais , Cartilagem/citologia , Cartilagem/fisiologia , Bovinos , Condrócitos/citologia , Força Compressiva/fisiologia , Técnicas In Vitro , Reação em Cadeia da Polimerase , Resistência ao Cisalhamento , Fatores de Tempo
16.
Arthritis Rheum ; 52(8): 2386-95, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16052587

RESUMO

OBJECTIVE: Joint injury in young adults leads to an increased risk of developing osteoarthritis (OA) later in life. This study was undertaken to determine if injurious mechanical compression of cartilage explants results in changes at the level of gene transcription that may lead to subsequent degradation of the cartilage. METHODS: Cartilage was explanted from the femoropatellar groove of newborn calves. Levels of messenger RNA encoding matrix molecules, proteases, their natural inhibitors, transcription factors, and cytokines were assessed in free swelling control cultures as compared with cartilage cultures at 1, 2, 4, 6, 12, and 24 hours after application of a single injurious compression. RESULTS: Gene-expression levels measured in noninjured, free swelling cartilage varied over 5 orders of magnitude. Matrix molecules were the most highly expressed of the genes tested, while cytokines, matrix metalloproteinases (MMPs), aggrecanases (ADAMTS-5), and transcription factors showed lower expression levels. Matrix molecules showed little change in expression after injurious compression, whereas MMP-3 increased approximately 250-fold, ADAMTS-5 increased approximately 40-fold, and tissue inhibitor of metalloproteinases 1 increased approximately 12-fold above the levels in free swelling cultures. Genes typically used as internal controls, GAPDH and beta-actin, increased expression levels approximately 4-fold after injury, making them unsuitable for use as normalization genes in this study. The expression levels of tumor necrosis factor alpha and interleukin-1beta, cytokines known to be involved in the progression of OA, did not change in the chondrocytes after injury. CONCLUSION: Changes in the level of gene expression after mechanical injury are gene specific and time dependent. The quantity of specific proteins may be altered as a result of these changes in gene expression, which may eventually lead to degradation at the tissue level and cause a compromise in cartilage structure and function.


Assuntos
Cartilagem Articular/lesões , Condrócitos/metabolismo , Expressão Gênica , Animais , Animais Recém-Nascidos , Bovinos , Análise por Conglomerados , Perfilação da Expressão Gênica , Técnicas In Vitro , Articulação do Joelho , Pressão , Estresse Mecânico , Fatores de Tempo , Ferimentos e Lesões/genética
17.
J Biol Chem ; 279(19): 19502-11, 2004 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-14960571

RESUMO

Chondrocytes are influenced by mechanical forces to remodel cartilage extracellular matrix. Previous studies have demonstrated the effects of mechanical forces on changes in biosynthesis and mRNA levels of particular extracellular matrix molecules, and have identified certain signaling pathways that may be involved. However, the broad extent and kinetics of mechano-regulation of gene transcription has not been studied in depth. We applied static compressive strains to bovine cartilage explants for periods between 1 and 24 h and measured the response of 28 genes using real time PCR. Compression time courses were also performed in the presence of an intracellular calcium chelator or an inhibitor of cyclic AMP-activated protein kinase A. Cluster analysis of the data revealed four main expression patterns: two groups containing either transiently up-regulated or duration-enhanced expression profiles could each be subdivided into genes that did or did not require intracellular calcium release and cyclic AMP-activated protein kinase A for their mechano-regulation. Transcription levels for aggrecan, type II collagen, and link protein were up-regulated approximately 2-3-fold during the first 8 h of 50% compression and subsequently down-regulated to levels below that of free-swelling controls by 24 h. Transcription levels of matrix metalloproteinases-3, -9, and -13, aggrecanase-1, and the matrix protease regulator cyclooxygenase-2 increased with the duration of 50% compression 2-16-fold by 24 h. Thus, transcription of proteins involved in matrix remodeling and catabolism dominated over anabolic matrix proteins as the duration of static compression increased. Immediate early genes c-fos and c-jun were dramatically up-regulated 6-30-fold, respectively, during the first 8 h of 50% compression and remained up-regulated after 24 h.


Assuntos
Cartilagem/química , Condrócitos/fisiologia , Ácido Egtázico/análogos & derivados , Regulação da Expressão Gênica , Proteínas ADAM , Proteína ADAMTS4 , Animais , Cartilagem Articular/metabolismo , Bovinos , Análise por Conglomerados , Colágeno/metabolismo , Colagenases/biossíntese , AMP Cíclico/metabolismo , Proteína Quinase Tipo II Dependente de AMP Cíclico , Proteínas Quinases Dependentes de AMP Cíclico/biossíntese , Ciclo-Oxigenase 2 , Ácido Egtázico/farmacologia , Isoenzimas/biossíntese , Cinética , Metaloproteinase 13 da Matriz , Metaloproteinase 3 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/biossíntese , Metaloendopeptidases/biossíntese , Modelos Genéticos , Pró-Colágeno N-Endopeptidase , Prostaglandina-Endoperóxido Sintases/biossíntese , RNA/química , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Estresse Mecânico , Resistência à Tração , Fatores de Tempo , Transcrição Gênica , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...