Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 12(11): 1017, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34716303

RESUMO

Glaucoma is a leading cause of blindness, affecting 70 million people worldwide. Owing to the similarity in anatomy and physiology between human and mouse eyes and the ability to genetically manipulate mice, mouse models are an invaluable resource for studying mechanisms underlying disease phenotypes and for developing therapeutic strategies. Here, we report the discovery of a new mouse model of early-onset glaucoma that bears a transversion substitution c. G344T, which results in a missense mutation, p. R115L in PITX2. The mutation causes an elevation in intraocular pressure (IOP) and progressive death of retinal ganglion cells (RGC). These ocular phenotypes recapitulate features of pathologies observed in human glaucoma. Increased oxidative stress was evident in the inner retina. We demonstrate that the mutant PITX2 protein was not capable of binding to Nuclear factor-like 2 (NRF2), which regulates Pitx2 expression and nuclear localization, and to YAP1, which is necessary for co-initiation of transcription of downstream targets. PITX2-mediated transcription of several antioxidant genes were also impaired. Treatment with N-Acetyl-L-cysteine exerted a profound neuroprotective effect on glaucoma-associated neuropathies, presumably through inhibition of oxidative stress. Our study demonstrates that a disruption of PITX2 leads to glaucoma optic pathogenesis and provides a novel early-onset glaucoma model that will enable elucidation of mechanisms underlying the disease as well as to serve as a resource to test new therapeutic strategies.


Assuntos
Glaucoma/genética , Glaucoma/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Mutação de Sentido Incorreto , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP/metabolismo , Animais , Apoptose/genética , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Pressão Intraocular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Células Ganglionares da Retina/metabolismo , Transfecção , Proteína Homeobox PITX2
2.
Invest Ophthalmol Vis Sci ; 57(3): 877-88, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26978024

RESUMO

PURPOSE: Retinal detachments (RDs), a separation of the light-sensitive tissue of the retina from its supporting layers in the posterior eye, isolate retinal cells from their normal supply of nourishment and can lead to their deterioration and death. We identified a new, spontaneous murine model of exudative retinal detachment, nm3342 (new mutant 3342, also referred to as rpea1: retinal pigment epithelium atrophy 1), which we characterize herein. METHODS: The chromosomal position for the recessive nm3342 mutation was determined by DNA pooling, and the causative mutation was discovered by comparison of whole exome sequences of mutant and wild-type controls. The effects of the mutation were examined in longitudinal studies by clinical evaluation, electroretinography (ERG), light microscopy, and marker and Western blot analyses. RESULTS: New mutant 3342, nm3342, also referred to as rpea1, causes an early-onset, complete RD on the ABJ/LeJ strain background, and central exudative RD and late-onset RPE atrophy on the C57BL/6J background. The ERG responses were normal at 2 months of age but deteriorate as mice age, concomitant with progressive pan-retinal photoreceptor loss. Genetic analysis localized rpea1 to mouse chromosome 2. By high-throughput sequencing of a whole exome capture library of an rpea1/rpea1 mutant and subsequent sequence analysis, a splice donor site mutation in the Prkcq (protein kinase C, θ) gene, was identified, leading to a skipping of exon 6, frame shift and premature termination. Homozygotes with a Prkcq-targeted null allele (Prkcqtm1Litt) have similar retinal phenotypes as homozygous rpea1 mice. We determined that the PKCθ protein is abundant in the lateral surfaces of RPE cells and colocalizes with both tight and adherens junction proteins. Phalloidin-stained RPE whole mounts showed abnormal RPE cell morphology with aberrant actin ring formation. CONCLUSIONS: The homozygous Prkcqrpea1 and the null Prkcqtm1Litt mutants are reliable novel mouse models of RD and can also be used to study the effects of the disruption of PRKCQ (PKCθ) signaling in RPE cells.


Assuntos
DNA/genética , Modelos Animais de Doenças , Mutação , Proteína Quinase C-delta/genética , Descolamento Retiniano/patologia , Epitélio Pigmentado da Retina/patologia , Animais , Atrofia , Western Blotting , Análise Mutacional de DNA , Eletrorretinografia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Células Fotorreceptoras de Vertebrados , Proteína Quinase C-delta/metabolismo , Descolamento Retiniano/enzimologia , Descolamento Retiniano/genética , Epitélio Pigmentado da Retina/enzimologia , Epitélio Pigmentado da Retina/fisiopatologia , Tomografia de Coerência Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...