Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Talanta ; 277: 126424, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38897015

RESUMO

Bovine mastitis is an inflammation of the mammary gland, and it is the most common infectious disease in dairy cattle. Mastitis reduces milk yield and quality, costing dairy farmers millions of dollars each year. The aim of this study was to develop a point-of-need test for identifying mastitis pathogens that is field portable, cost-effective and can be used with minimal training. Using a proprietary polymer-based milk sample preparation method to rapidly extract pathogen DNA in milk samples, we demonstrated quantitative Polymerase Chain Reaction (qPCR) assays for six common bovine bacterial mastitis pathogens: Staphylococcus aureus, Streptococcus agalactiae, Streptococcus dysgalactiae, Streptococcus uberis, Mycoplasma bovis and Escherichia coli. We also implemented this sample preparation method on a prototype point-of-need system in a proof-of-concept field trial to evaluate user experience. Importantly, the protype system enabled a sample-to-result turnaround time of within 70 min to quantitatively detect all six target pathogens. The key advantage of our point-of-need prototype system is being culture-independent yet providing automated milk sample preparation for molecular identification of key mastitis pathogens by non-expert users. Our point-of-need prototype system showed a good correlation to laboratory-based qPCR for target pathogen detection outcomes, thus potentially removing the need for milk samples to be transported off-site for laboratory testing. Above all, we successfully achieved our objective of developing a point-of-need biosensor technology for mastitis and increased its readiness level with industry partners towards technology commercialization.


Assuntos
Técnicas Biossensoriais , Mastite Bovina , Leite , Animais , Leite/microbiologia , Mastite Bovina/diagnóstico , Mastite Bovina/microbiologia , Bovinos , Técnicas Biossensoriais/métodos , Feminino , DNA Bacteriano/análise , DNA Bacteriano/isolamento & purificação , DNA Bacteriano/genética , Sistemas Automatizados de Assistência Junto ao Leito , Reação em Cadeia da Polimerase em Tempo Real , Streptococcus/isolamento & purificação , Streptococcus/genética
2.
ACS Sens ; 6(12): 4283-4296, 2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34874700

RESUMO

The spread of antimicrobial resistance (AMR) is a rapidly growing threat to humankind on both regional and global scales. As countries worldwide prepare to embrace a One Health approach to AMR management, which is one that recognizes the interconnectivity between human, animal, and environmental health, increasing attention is being paid to identifying and monitoring key contributing factors and critical control points. Presently, AMR sensing technologies have significantly progressed phenotypic antimicrobial susceptibility testing (AST) and genotypic antimicrobial resistance gene (ARG) detection in human healthcare. For effective AMR management, an evolution of innovative sensing technologies is needed for tackling the unique challenges of interconnected AMR across various and different health domains. This review comprehensively discusses the modern state-of-play for innovative commercial and emerging AMR sensing technologies, including sequencing, microfluidic, and miniaturized point-of-need platforms. With a unique view toward the future of One Health, we also provide our perspectives and outlook on the constantly changing landscape of AMR sensing technologies beyond the human health domain.


Assuntos
Antibacterianos , Anti-Infecciosos , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Farmacorresistência Bacteriana , Saúde Ambiental , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA