Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Neurosci ; 47(4): 259-272, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508906

RESUMO

Middle age has historically been an understudied period of life compared to older age, when cognitive and brain health decline are most pronounced, but the scope for intervention may be limited. However, recent research suggests that middle age could mark a shift in brain aging. We review emerging evidence on multiple levels of analysis indicating that midlife is a period defined by unique central and peripheral processes that shape future cognitive trajectories and brain health. Informed by recent developments in aging research and lifespan studies in humans and animal models, we highlight the utility of modeling non-linear changes in study samples with wide subject age ranges to distinguish life stage-specific processes from those acting linearly throughout the lifespan.


Assuntos
Encéfalo , Cognição , Pessoa de Meia-Idade , Animais , Humanos , Envelhecimento
2.
Neuropharmacology ; 239: 109674, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37541383

RESUMO

The molecular processes that underlie long-term memory formation involve signaling pathway activation by neurotransmitter release, which induces the expression of immediate early genes, such as Zif268, having a key role in memory formation. In this work, we show that the cannabinoid CB1 receptor signaling is necessary for the effects of dexamethasone on the behavioral response in an inhibitory avoidance task, on dexamethasone-induced ERK phosphorylation, and on dexamethasone-dependent Zif268 expression. Furthermore, we provide primary evidence for the mechanism responsible for this crosstalk between cannabinoid and glucocorticoid-mediated signaling pathways, showing that dexamethasone regulates endocannabinoid metabolism by inhibiting the activity of the Fatty acid amide hydrolase (FAAH), an integral membrane enzyme that hydrolyzes endocannabinoids and related amidated signaling lipids. Our results provide novel evidence regarding the role of the endocannabinoid system, and in particular of the CB1 receptor, as a mediator of the effects of glucocorticoids on the consolidation of aversive memories.


Assuntos
Canabinoides , Consolidação da Memória , Endocanabinoides/metabolismo , Receptor CB1 de Canabinoide/genética , Canabinoides/farmacologia , Transdução de Sinais , Glucocorticoides/farmacologia , Dexametasona/farmacologia , Amidoidrolases , Moduladores de Receptores de Canabinoides/farmacologia
3.
Neuron ; 111(11): 1714-1731.e3, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37015226

RESUMO

The notion of exploiting the regenerative potential of the human brain in physiological aging or neurological diseases represents a particularly attractive alternative to conventional strategies for enhancing or restoring brain function. However, a major first question to address is whether the human brain does possess the ability to regenerate. The existence of human adult hippocampal neurogenesis (AHN) has been at the center of a fierce scientific debate for many years. The advent of single-cell transcriptomic technologies was initially viewed as a panacea to resolving this controversy. However, recent single-cell RNA sequencing studies in the human hippocampus yielded conflicting results. Here, we critically discuss and re-analyze previously published AHN-related single-cell transcriptomic datasets. We argue that, although promising, the single-cell transcriptomic profiling of AHN in the human brain can be confounded by methodological, conceptual, and biological factors that need to be consistently addressed across studies and openly discussed within the scientific community.


Assuntos
Hipocampo , Transcriptoma , Humanos , Adulto , Hipocampo/fisiologia , Neurogênese/fisiologia , Perfilação da Expressão Gênica
4.
Cell Stem Cell ; 30(2): 120-136, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36736288

RESUMO

Adult hippocampal neurogenesis (AHN) drops sharply during early stages of Alzheimer's disease (AD), via unknown mechanisms, and correlates with cognitive status in AD patients. Understanding AHN regulation in AD could provide a framework for innovative pharmacological interventions. We here combine molecular, behavioral, and clinical data and critically discuss the multicellular complexity of the AHN niche in relation to AD pathophysiology. We further present a roadmap toward a better understanding of the role of AHN in AD by probing the promises and caveats of the latest technological advancements in the field and addressing the conceptual and methodological challenges ahead.


Assuntos
Doença de Alzheimer , Humanos , Adulto , Relevância Clínica , Hipocampo , Neurogênese/fisiologia , Cognição
5.
EMBO Rep ; 24(2): e53801, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36472244

RESUMO

Adult neural progenitor cells (aNPCs) ensure lifelong neurogenesis in the mammalian hippocampus. Proper regulation of aNPC fate has thus important implications for brain plasticity and healthy aging. Piwi proteins and the small noncoding RNAs interacting with them (piRNAs) have been proposed to control memory and anxiety, but the mechanism remains elusive. Here, we show that Piwil2 (Mili) is essential for proper neurogenesis in the postnatal mouse hippocampus. RNA sequencing of aNPCs and their differentiated progeny reveal that Mili and piRNAs are dynamically expressed in neurogenesis. Depletion of Mili and piRNAs in the adult hippocampus impairs aNPC differentiation toward a neural fate, induces senescence, and generates reactive glia. Transcripts modulated upon Mili depletion bear sequences complementary or homologous to piRNAs and include repetitive elements and mRNAs encoding essential proteins for proper neurogenesis. Our results provide evidence of a critical role for Mili in maintaining fitness and proper fate of aNPCs, underpinning a possible involvement of the piRNA pathway in brain plasticity and successful aging.


Assuntos
Proteínas Argonautas , Hipocampo , Neurogênese , Animais , Camundongos , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Senescência Celular/genética , Hipocampo/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Neurogênese/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
6.
Nat Immunol ; 23(6): 878-891, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35618831

RESUMO

The ability of immune-modulating biologics to prevent and reverse pathology has transformed recent clinical practice. Full utility in the neuroinflammation space, however, requires identification of both effective targets for local immune modulation and a delivery system capable of crossing the blood-brain barrier. The recent identification and characterization of a small population of regulatory T (Treg) cells resident in the brain presents one such potential therapeutic target. Here, we identified brain interleukin 2 (IL-2) levels as a limiting factor for brain-resident Treg cells. We developed a gene-delivery approach for astrocytes, with a small-molecule on-switch to allow temporal control, and enhanced production in reactive astrocytes to spatially direct delivery to inflammatory sites. Mice with brain-specific IL-2 delivery were protected in traumatic brain injury, stroke and multiple sclerosis models, without impacting the peripheral immune system. These results validate brain-specific IL-2 gene delivery as effective protection against neuroinflammation, and provide a versatile platform for delivery of diverse biologics to neuroinflammatory patients.


Assuntos
Astrócitos , Produtos Biológicos , Animais , Encéfalo , Humanos , Interleucina-2/genética , Interleucinas , Camundongos , Doenças Neuroinflamatórias , Linfócitos T Reguladores
7.
Eur J Neurosci ; 55(9-10): 2491-2518, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33724565

RESUMO

Stressful experiences evoke, among others, a rapid increase in brain (nor)epinephrine (NE) levels and a slower increase in glucocorticoid hormones (GCs) in the brain. Microglia are key regulators of neuronal function and contain receptors for NE and GCs. These brain cells may therefore potentially be involved in modulating stress effects on neuronal function and learning and memory. In this review, we discuss that stress induces (1) an increase in microglial numbers as well as (2) a shift toward a pro-inflammatory profile. These microglia have (3) impaired crosstalk with neurons and (4) disrupted glutamate signaling. Moreover, microglial immune responses after stress (5) alter the kynurenine pathway through metabolites that impair glutamatergic transmission. All these effects could be involved in the impairments in memory and in synaptic plasticity caused by (prolonged) stress, implicating microglia as a potential novel target in stress-related memory impairments.


Assuntos
Microglia , Plasticidade Neuronal , Glucocorticoides/metabolismo , Humanos , Transtornos da Memória/metabolismo , Microglia/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo
8.
Cells ; 10(11)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34831249

RESUMO

Antihistamines and glucocorticoids (GCs) are often used together in the clinic to treat several inflammation-related situations. Although there is no rationale for this association, clinical practice has assumed that, due to their concomitant anti-inflammatory effects, there should be an intrinsic benefit to their co-administration. In this work, we evaluated the effects of the co-treatment of several antihistamines on dexamethasone-induced glucocorticoid receptor transcriptional activity on the expression of various inflammation-related genes in A549 and U937 cell lines. Our results show that all antihistamines potentiate GCs' anti-inflammatory effects, presenting ligand-, cell- and gene-dependent effects. Given that treatment with GCs has strong adverse effects, particularly on bone metabolism, we also examined the impact of antihistamine co-treatment on the expression of bone metabolism markers. Using MC3T3-E1 pre-osteoblastic cells, we observed that, though the antihistamine azelastine reduces the expression of dexamethasone-induced bone loss molecular markers, it potentiates osteoblast apoptosis. Our results suggest that the synergistic effect could contribute to reducing GC clinical doses, ineffective by itself but effective in combination with an antihistamine. This could result in a therapeutic advantage, as the addition of an antihistamine may reinforce the wanted effects of GCs, while related adverse effects could be diminished or at least mitigated. By modulating the patterns of gene activation/repression mediated by GR, antihistamines could enhance only the desired effects of GCs, allowing their effective dose to be reduced. Further research is needed to correctly determine the clinical scope, benefits, and potential risks of this therapeutic strategy.


Assuntos
Anti-Inflamatórios/farmacologia , Dexametasona/farmacologia , Regulação da Expressão Gênica , Antagonistas dos Receptores Histamínicos/farmacologia , Inflamação/genética , Receptores de Glucocorticoides/metabolismo , Animais , Biomarcadores/metabolismo , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Humanos , Camundongos , NF-kappa B/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Ftalazinas/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
9.
Biol Psychiatry ; 90(7): 494-504, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34503674

RESUMO

BACKGROUND: Traumatic experiences, such as conditioned threat, are coded as enduring memories that are frequently subject to generalization, which is characterized by (re-) expression of fear in safe environments. However, the neurobiological mechanisms underlying threat generalization after a traumatic experience and the role of stress hormones in this process remain poorly understood. METHODS: We examined the influence of glucocorticoid hormones on the strength and specificity of conditioned fear memory at the level of sparsely distributed dentate gyrus (DG) engram cells in male mice. RESULTS: We found that elevating glucocorticoid hormones after fear conditioning induces a generalized contextual fear response. This was accompanied by a selective and persistent increase in the excitability and number of activated DG granule cells. Selective chemogenetic suppression of these sparse cells in the DG prevented glucocorticoid-induced fear generalization and restored contextual memory specificity, while leaving expression of auditory fear memory unaffected. CONCLUSIONS: These results implicate the sparse ensemble of DG engram cells as a critical cellular substrate underlying fear generalization induced by glucocorticoid stress hormones.


Assuntos
Giro Denteado , Glucocorticoides , Animais , Medo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios
11.
Handb Clin Neurol ; 179: 125-140, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34225958

RESUMO

The adult brain harbors specific niches where stem cells undergo substantial plasticity and, in some regions, generate new neurons throughout life. This phenomenon is well known in the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampus and has recently also been described in the hypothalamus of several rodent and primate species. After a brief overview of preclinical studies illustrating the pathophysiologic significance of hypothalamic neurogenesis in the control of energy metabolism, reproduction, thermoregulation, sleep, and aging, we review current literature on the neurogenic niche of the human hypothalamus. A comparison of the organization of the niche between humans and rodents highlights some common features, but also substantial differences, e.g., in the distribution and extent of the hypothalamic neural stem cells. Exploring the full dynamics of hypothalamic neurogenesis in humans raises a formidable challenge however, given among others, inherent technical limitations. We close with discussing possible functional role(s) of the human hypothalamic niche, and how gaining more insights into this form of plasticity could be relevant for a better understanding of pathologies associated with disturbed hypothalamic function.


Assuntos
Células-Tronco Neurais , Neurogênese , Adulto , Encéfalo , Humanos , Hipotálamo , Neurônios
12.
Stress ; 24(2): 189-195, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33494651

RESUMO

Stress is a potent environmental factor that can confer potent and enduring effects on brain structure and function. Exposure to stress during early life (ELS) has been linked to a wide range of consequences later in life. In particular, ELS exerts lasting effects on neurogenesis in the adult hippocampus, suggesting that ELS is a significant regulator of adult neural stem cell numbers and function. Here, we investigated the effect of ELS on cell proliferation and the numbers of neural stem/precursor cells in another neurogenic region: the hypothalamus of adult mice. We show that ELS has long-term suppressive effects on cell proliferation in the hypothalamic parenchyma and reduces the numbers of putative hypothalamic neural stem/precursor cells at 4 months of age. Specifically, ELS reduced the number of PCNA + cells present in hypothalamic areas surrounding the 3rd ventricle with a specific reduction in the proliferation of Sox2+/Nestin-GFP + putative stem cells present in the median eminence at the base of the 3rd ventricle. Furthermore, ELS reduced the total numbers of ß-tanycytes lining the ventral 3rd ventricle, without affecting α-tanycyte numbers in more dorsal areas. These results are the first to indicate that ELS significantly reduces proliferation and ß-tanycyte numbers in the adult hypothalamus, and may have (patho)physiological consequences for metabolic regulation or other hypothalamic functions in which ß-tanycytes are involved.


LAY SUMMARYWe show for the first time, long-lasting effects of exposure to early life stress on cellular plasticity in the hypothalamus of adult mice.Stress in the first week of life resulted in reduced numbers of (proliferating) stem cells in specific subregions of the hypothalamus at an adult age.This loss of stem cells and decreased proliferation highlights how early life stress can affect hypothalamic functions in later life.


Assuntos
Células-Tronco Neurais , Estresse Psicológico , Animais , Camundongos , Proliferação de Células , Hipotálamo
13.
Front Cell Neurosci ; 15: 781434, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35058752

RESUMO

The adult neurogenic niches are complex multicellular systems, receiving regulatory input from a multitude of intracellular, juxtacrine, and paracrine signals and biological pathways. Within the niches, adult neural stem cells (aNSCs) generate astrocytic and neuronal progeny, with the latter predominating in physiological conditions. The new neurons generated from this neurogenic process are functionally linked to memory, cognition, and mood regulation, while much less is known about the functional contribution of aNSC-derived newborn astrocytes and adult-born oligodendrocytes. Accumulating evidence suggests that the deregulation of aNSCs and their progeny can impact, or can be impacted by, aging and several brain pathologies, including neurodevelopmental and mood disorders, neurodegenerative diseases, and also by insults, such as epileptic seizures, stroke, or traumatic brain injury. Hence, understanding the regulatory underpinnings of aNSC activation, differentiation, and fate commitment could help identify novel therapeutic avenues for a series of pathological conditions. Over the last two decades, small non-coding RNAs (sncRNAs) have emerged as key regulators of NSC fate determination in the adult neurogenic niches. In this review, we synthesize prior knowledge on how sncRNAs, such as microRNAs (miRNAs) and piwi-interacting RNAs (piRNAs), may impact NSC fate determination in the adult brain and we critically assess the functional significance of these events. We discuss the concepts that emerge from these examples and how they could be used to provide a framework for considering aNSC (de)regulation in the pathogenesis and treatment of neurological diseases.

15.
Front Neurosci ; 14: 885, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013293
16.
Curr Biol ; 30(18): R1014-R1018, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32961149

RESUMO

Recently, a petition was offered to the European Commission calling for an immediate ban on animal testing. Although a Europe-wide moratorium on the use of animals in science is not yet possible, there has been a push by the non-scientific community and politicians for a rapid transition to animal-free innovations. Although there are benefits for both animal welfare and researchers, advances on alternative methods have not progressed enough to be able to replace animal research in the foreseeable future. This trend has led first and foremost to a substantial increase in the administrative burden and hurdles required to make timely advances in research and treatments for human and animal diseases. The current COVID-19 pandemic clearly highlights how much we actually rely on animal research. COVID-19 affects several organs and systems, and the various animal-free alternatives currently available do not come close to this complexity. In this Essay, we therefore argue that the use of animals is essential for the advancement of human and veterinary health.


Assuntos
Experimentação Animal , Pesquisa Biomédica , Infecções por Coronavirus , Modelos Animais de Doenças , Pandemias , Pneumonia Viral , Animais , Betacoronavirus , COVID-19 , Humanos , SARS-CoV-2
18.
Behav Brain Res ; 381: 112458, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31899214

RESUMO

In this perspective article, we reflect on the recent debate about the existence of human neurogenesis and discuss direct, and also indirect, support for the ongoing formation, and functional relevance, of new neurons in the adult and aged human hippocampus. To explain the discrepancies between several prominently published human studies, we discuss critical methodological aspects and highlight the importance of optimal tissue preservation and processing for histological examination. We further discuss novel approaches, like single-cell/nucleus sequencing and magnetic resonance spectroscopy, that will help advance the study of human neurogenesis to its fullest potential - understanding its contribution to human hippocampal functions and related disorders like depression and dementia.


Assuntos
Hipocampo/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Adulto , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Neurônios/citologia , Neurônios/metabolismo , Análise de Célula Única
19.
Pharmacol Res Perspect ; 7(6): e00531, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31687162

RESUMO

Glucocorticoids are among the most effective drugs to treat asthma. However, the severe adverse effects associated generate the need for its therapeutic optimization. Conversely, though histamine is undoubtedly related to asthma development, there is a lack of efficacy of antihistamines in controlling its symptoms, which prevents their clinical application. We have reported that antihistamines potentiate glucocorticoids' responses in vitro and recent observations have indicated that the coadministration of an antihistamine and a synthetic glucocorticoid has synergistic effects on a murine model of allergic rhinitis. Here, the aim of this work is to establish if this therapeutic combination could be beneficial in a murine model of asthma. We used an allergen-induced model of asthma (employing ovalbumin) to evaluate the effects of the synthetic glucocorticoid dexamethasone combined with the antihistamine azelastine. Our results indicate that the cotreatment with azelastine and a suboptimal dose of dexamethasone can improve allergic lung inflammation as shown by a decrease in eosinophils in bronchoalveolar lavage, fewer peribronchial and perivascular infiltrates, and mucin-producing cells. In addition, serum levels of allergen-specific IgE and IgG1 were also reduced, as well as the expression of lung inflammatory-related genes IL-4, IL-5, Muc5AC, and Arginase I. The potentiation of dexamethasone effects by azelastine could allow to reduce the effective glucocorticoid dose needed to achieve a therapeutic effect. These findings provide first new insights into the potential benefits of glucocorticoids and antihistamines combination for the treatment of asthma and grants further research to evaluate this approach in other related inflammatory conditions.


Assuntos
Antiasmáticos/farmacologia , Asma/tratamento farmacológico , Dexametasona/farmacologia , Ftalazinas/farmacologia , Administração Intranasal , Animais , Antiasmáticos/uso terapêutico , Asma/sangue , Asma/imunologia , Asma/patologia , Dexametasona/uso terapêutico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Quimioterapia Combinada/métodos , Feminino , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , Células HEK293 , Antagonistas não Sedativos dos Receptores H1 da Histamina/farmacologia , Antagonistas não Sedativos dos Receptores H1 da Histamina/uso terapêutico , Humanos , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Camundongos , Ovalbumina/imunologia , Ftalazinas/uso terapêutico , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/metabolismo , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/imunologia
20.
Front Pharmacol ; 10: 214, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930776

RESUMO

Regulatory factors that control gene transcription in multicellular organisms are assembled in multicomponent complexes by combinatorial interactions. In this context, nuclear receptors provide well-characterized and physiologically relevant systems to study ligand-induced transcription resulting from the integration of cellular and genomic information in a cell- and gene-specific manner. Here, we developed a mathematical model describing the interactions between the glucocorticoid receptor (GR) and other components of a multifactorial regulatory complex controlling the transcription of GR-target genes, such as coregulator peptides. We support the validity of the model in relation to gene-specific GR transactivation with gene transcription data from A549 cells and in vitro real time quantification of coregulator-GR interactions. The model accurately describes and helps to interpret ligand-specific and gene-specific transcriptional regulation by the GR. The comprehensive character of the model allows future insight into the function and relative contribution of the molecular species proposed in ligand- and gene-specific transcriptional regulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...