Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
J Glob Antimicrob Resist ; 37: 122-128, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38552871

RESUMO

BACKGROUND: Recent studies have shown promise in predicting clinical antibiotic resistance rates from sewage data. Few have focused on Klebsiella pneumoniae, despite its virulence and importance as carrier of antibiotic resistance. Several media have been suggested for the isolation of K. pneumoniae from complex samples. However, comprehensive evaluations of culture protocols for isolation of K. pneumoniae from sewage are lacking. METHODS: Here, influent samples from a major Swedish sewage treatment plant were used to evaluate ten culture conditions in parallel: cultivation on Brilliant green containing Inositol-Nitrate-Deoxycholate agar (BIND), Bruce agar, Klebsiella ChromoSelect Selective agar®, MacConkey-Inositol-Carbenicillin, or Simmons Citrate Agar with Inositol (SCAI) incubated at either 37°C or 42°C for 44 h. The culture conditions were compared based on colony counts of presumed K. pneumoniae and identification precision assessed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. RESULTS: The sensitivity was lowest for BIND, whereas it was similar for the other media irrespective of incubation temperature. For four media, a better precision was observed after incubation at 42°C compared to 37°C, to a large extent explained by a lower frequency of captured Klebsiella oxytoca. SCAI incubated at 42°C showed the highest precision (84.4%). By combining this protocol with subsequent antibiotic resistance screening of collected isolates, low resistance rates in sewage K. pneumoniae were revealed, potentially reflecting the local resistance landscape. CONCLUSION: When combined with downstream analyses, SCAI incubated at 42°C could be a valuable culture protocol for sewage-based studies on various aspects of K. pneumoniae epidemiology including antibiotic resistance prevalence.

2.
Environ Int ; 180: 108242, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816267

RESUMO

Urban wastewater treatment plants harbor a large collection of antibiotic resistant enteric bacteria. It is therefore reasonable to hypothesize that workers at such plants would possess a more diverse set of resistant enteric bacteria, compared to the general population. To address this hypothesis, we have compared the fecal microbiome and resistome of 87 workers at wastewater treatment plants (WWTPs) from Romania and the Netherlands to those of 87 control individuals, using shotgun metagenomics. Controlling for potential confounders, neither the total antibiotic resistance gene (ARG) abundance, nor the overall bacterial composition were significantly different between the two groups. If anything, the ARG richness was slightly lower in WWTP workers, and in a stratified analysis the total ARG abundance was significantly lower in Dutch workers compared to Dutch control participants. We identified country of residence, together with recent antibiotic intake in the Dutch population, as the largest contributing factors to the total abundance of ARGs. A striking side-finding was that sex was associated with carriage of disinfectant resistance genes, with women in both Romania and the Netherlands having significantly higher abundance compared to men. A follow up investigation including an additional 313 publicly available samples from healthy individuals from three additional countries showed that the difference was significant for three genes conferring resistance to chemicals commonly used in cosmetics and cleaning products. We therefore hypothesize that the use of cosmetics and, possibly, cleaning products leads to higher abundance of disinfectant resistance genes in the microbiome of the users. Altogether, this study shows that working at a WWTP does not lead to a higher abundance or diversity of ARGs and no large shifts in the overall gut microbial composition in comparison to participants not working at a WWTP. Instead, other factors such as country of residence, recent antibiotic intake and sex seem to play a larger role.


Assuntos
Desinfetantes , Microbiota , Purificação da Água , Humanos , Feminino , Águas Residuárias , Genes Bacterianos , Bactérias/genética , Antibacterianos/farmacologia , Antibacterianos/análise , Microbiota/genética
3.
Commun Biol ; 6(1): 812, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537271

RESUMO

Antibiotic resistance is a growing threat to human health, caused in part by pathogens accumulating antibiotic resistance genes (ARGs) through horizontal gene transfer. New ARGs are typically not recognized until they have become widely disseminated, which limits our ability to reduce their spread. In this study, we use large-scale computational screening of bacterial genomes to identify previously undiscovered mobile ARGs in pathogens. From ~1 million genomes, we predict 1,071,815 genes encoding 34,053 unique aminoglycoside-modifying enzymes (AMEs). These cluster into 7,612 families (<70% amino acid identity) of which 88 are previously described. Fifty new AME families are associated with mobile genetic elements and pathogenic hosts. From these, 24 of 28 experimentally tested AMEs confer resistance to aminoglycoside(s) in Escherichia coli, with 17 providing resistance above clinical breakpoints. This study greatly expands the range of clinically relevant aminoglycoside resistance determinants and demonstrates that computational methods enable early discovery of potentially emerging ARGs.


Assuntos
Aminoglicosídeos , Farmacorresistência Bacteriana , Humanos , Aminoglicosídeos/farmacologia , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Genoma Bacteriano , Escherichia coli/metabolismo
4.
Front Microbiol ; 14: 1193907, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293232

RESUMO

Antibiotics are an essential tool of modern medicine, contributing to significantly decreasing mortality and morbidity rates from infectious diseases. However, persistent misuse of these drugs has accelerated the evolution of antibiotic resistance, negatively impacting clinical practice. The environment contributes to both the evolution and transmission of resistance. From all anthropically polluted aquatic environments, wastewater treatment plants (WWTPs) are probably the main reservoirs of resistant pathogens. They should be regarded as critical control points for preventing or reducing the release of antibiotics, antibiotic-resistant bacteria (ARB), and antibiotic-resistance genes (ARGs) into the natural environment. This review focuses on the fate of the pathogens Enterococcus faecium, Staphylococcus aureus, Clostridium difficile, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae spp. (ESCAPE) in WWTPs. All ESCAPE pathogen species, including high-risk clones and resistance determinants to last-resort antibiotics such as carbapenems, colistin, and multi-drug resistance platforms, were detected in wastewater. The whole genome sequencing studies demonstrate the clonal relationships and dissemination of Gram-negative ESCAPE species into the wastewater via hospital effluents and the enrichment of virulence and resistance determinants of S. aureus and enterococci in WWTPs. Therefore, the efficiency of different wastewater treatment processes regarding the removal of clinically relevant ARB species and ARGs, as well as the influence of water quality factors on their performance, should be explored and monitored, along with the development of more effective treatments and appropriate indicators (ESCAPE bacteria and/or ARGs). This knowledge will allow the development of quality standards for point sources and effluents to consolidate the WWTP barrier role against the environmental and public health AR threats.

5.
Artigo em Inglês | MEDLINE | ID: mdl-36901565

RESUMO

Wastewaters can be analyzed to generate population-level data for public health surveillance, such as antibiotic resistance monitoring. To provide representative data for the contributing population, bacterial isolates collected from wastewater should originate from different individuals and not be distorted by a selection pressure in the wastewater. Here we use Escherichia coli diversity as a proxy for representativeness when comparing grab and composite sampling at a major municipal wastewater treatment plant influent and an untreated hospital effluent in Gothenburg, Sweden. All municipal samples showed high E. coli diversity irrespective of the sampling method. In contrast, a marked increase in diversity was seen for composite compared to grab samples from the hospital effluent. Virtual resampling also showed the value of collecting fewer isolates on multiple occasions rather than many isolates from a single sample. Time-kill tests where individual E. coli strains were exposed to sterile-filtered hospital wastewater showed rapid killing of antibiotic-susceptible strains and significant selection of multi-resistant strains when incubated at 20 °C, an effect which could be avoided at 4 °C. In conclusion, depending on the wastewater collection site, both sampling method and collection/storage temperature could significantly impact the representativeness of the wastewater sample.


Assuntos
Escherichia coli , Águas Residuárias , Humanos , Vigilância Epidemiológica Baseada em Águas Residuárias , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Bactérias
7.
Front Microbiol ; 13: 997849, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386654

RESUMO

Watersheds contaminated with municipal, hospital, and agricultural residues are recognized as reservoirs for bacteria carrying antibiotic resistance genes (ARGs). The objective of this study was to determine the potential of environmental bacterial communities from the highly contaminated La Paz River basin in Bolivia to transfer ARGs to an Escherichia coli lab strain used as the recipient. Additionally, we tested ZnSO4 and CuSO4 at sub-inhibitory concentrations as stressors and analyzed transfer frequencies (TFs), diversity, richness, and acquired resistance profiles. The bacterial communities were collected from surface water in an urban site close to a hospital and near an agricultural area. High transfer potentials of a large set of resistance factors to E. coli were observed at both sites. Whole-genome sequencing revealed that putative plasmids belonging to the incompatibility group N (IncN, IncN2, and IncN3) were predominant among the transconjugants. All IncN variants were verified to be mobile by a second conjugation step. The plasmid backbones were similar to other IncN plasmids isolated worldwide and carried a wide range of ARGs extensively corroborated by phenotypic resistance patterns. Interestingly, all transconjugants also acquired the class 1 integron intl1, which is commonly known as a proxy for anthropogenic pollution. The addition of ZnSO4 and CuSO4 at sub-inhibitory concentrations did not affect the transfer rate. Metal resistance genes were absent from most transconjugants, suggesting a minor role, if any, of metals in the spread of multidrug-resistant plasmids at the investigated sites.

8.
Environ Sci Technol ; 56(21): 14982-14993, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35759608

RESUMO

Wastewater-based surveillance (WBS) for disease monitoring is highly promising but requires consistent methodologies that incorporate predetermined objectives, targets, and metrics. Herein, we describe a comprehensive metagenomics-based approach for global surveillance of antibiotic resistance in sewage that enables assessment of 1) which antibiotic resistance genes (ARGs) are shared across regions/communities; 2) which ARGs are discriminatory; and 3) factors associated with overall trends in ARGs, such as antibiotic concentrations. Across an internationally sourced transect of sewage samples collected using a centralized, standardized protocol, ARG relative abundances (16S rRNA gene-normalized) were highest in Hong Kong and India and lowest in Sweden and Switzerland, reflecting national policy, measured antibiotic concentrations, and metal resistance genes. Asian versus European/US resistomes were distinct, with macrolide-lincosamide-streptogramin, phenicol, quinolone, and tetracycline versus multidrug resistance ARGs being discriminatory, respectively. Regional trends in measured antibiotic concentrations differed from trends expected from public sales data. This could reflect unaccounted uses, captured only by the WBS approach. If properly benchmarked, antibiotic WBS might complement public sales and consumption statistics in the future. The WBS approach defined herein demonstrates multisite comparability and sensitivity to local/regional factors.


Assuntos
Esgotos , Águas Residuárias , RNA Ribossômico 16S/genética , Genes Bacterianos , Antibacterianos/farmacologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-35457624

RESUMO

Antibiotic resistance (AR) is currently a major threat to global health, calling for a One Health approach to be properly understood, monitored, tackled, and managed. Potential risk factors for AR are often studied in specific high-risk populations, but are still poorly understood in the general population. Our aim was to explore, describe, and characterize potential risk factors for carriage of Extended-Spectrum Beta-Lactamase-resistant Escherichia coli (ESBL-EC) in a large sample of European individuals aged between 16 and 67 years recruited from the general population in Southern Germany, the Netherlands, and Romania. Questionnaire and stool sample collection for this cross-sectional study took place from September 2018 to March 2020. Selected cultures of participants' stool samples were analyzed for detection of ESBL-EC. A total of 1183 participants were included in the analyses: 333 from Germany, 689 from the Netherlands, and 161 from Romania. Travels to Northern Africa (adjusted Odds Ratio, aOR 4.03, 95% Confidence Interval, CI 1.67-9.68), Sub-Saharan Africa (aOR 4.60, 95% CI 1.60-13.26), and Asia (aOR 4.08, 95% CI 1.97-8.43) were identified as independent risk factors for carriage of ESBL-EC. Therefore, travel to these regions should continue to be routinely asked about by clinical practitioners as possible risk factors when considering antibiotic therapy.


Assuntos
Infecções por Escherichia coli , Doença Relacionada a Viagens , beta-Lactamases , Adolescente , Adulto , Idoso , Antibacterianos/uso terapêutico , Estudos Transversais , Farmacorresistência Bacteriana , Escherichia coli , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/epidemiologia , Europa (Continente)/epidemiologia , Fezes , Humanos , Pessoa de Meia-Idade , Prevalência , Fatores de Risco , Adulto Jovem , beta-Lactamases/genética
10.
Microbiome ; 10(1): 20, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-35093160

RESUMO

BACKGROUND: There is concern that the microbially rich activated sludge environment of wastewater treatment plants (WWTPs) may contribute to the dissemination of antibiotic resistance genes (ARGs). We applied long-read (nanopore) sequencing to profile ARGs and their neighboring genes to illuminate their fate in the activated sludge treatment by comparing their abundance, genetic locations, mobility potential, and bacterial hosts within activated sludge relative to those in influent sewage across five WWTPs from three continents. RESULTS: The abundances (gene copies per Gb of reads, aka gc/Gb) of all ARGs and those carried by putative pathogens decreased 75-90% from influent sewage (192-605 gc/Gb) to activated sludge (31-62 gc/Gb) at all five WWTPs. Long reads enabled quantification of the percent abundance of ARGs with mobility potential (i.e., located on plasmids or co-located with other mobile genetic elements (MGEs)). The abundance of plasmid-associated ARGs decreased at four of five WWTPs (from 40-73 to 31-68%), and ARGs co-located with transposable, integrative, and conjugative element hallmark genes showed similar trends. Most ARG-associated elements decreased 0.35-13.52% while integrative and transposable elements displayed slight increases at two WWTPs (1.4-2.4%). While resistome and taxonomic compositions both shifted significantly, host phyla for chromosomal ARG classes remained relatively consistent, indicating vertical gene transfer via active biomass growth in activated sludge as the key pathway of chromosomal ARG dissemination. CONCLUSIONS: Overall, our results suggest that the activated sludge process acted as a barrier against the proliferation of most ARGs, while those that persisted or increased warrant further attention. Video abstract.


Assuntos
Antibacterianos , Esgotos , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos/genética , Sequências Repetitivas Dispersas/genética , Esgotos/microbiologia , Águas Residuárias/microbiologia
11.
Nat Rev Microbiol ; 20(5): 257-269, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34737424

RESUMO

Antibiotic resistance is a global health challenge, involving the transfer of bacteria and genes between humans, animals and the environment. Although multiple barriers restrict the flow of both bacteria and genes, pathogens recurrently acquire new resistance factors from other species, thereby reducing our ability to prevent and treat bacterial infections. Evolutionary events that lead to the emergence of new resistance factors in pathogens are rare and challenging to predict, but may be associated with vast ramifications. Transmission events of already widespread resistant strains are, on the other hand, common, quantifiable and more predictable, but the consequences of each event are limited. Quantifying the pathways and identifying the drivers of and bottlenecks for environmental evolution and transmission of antibiotic resistance are key components to understand and manage the resistance crisis as a whole. In this Review, we present our current understanding of the roles of the environment, including antibiotic pollution, in resistance evolution, in transmission and as a mere reflection of the regional antibiotic resistance situation in the clinic. We provide a perspective on current evidence, describe risk scenarios, discuss methods for surveillance and the assessment of potential drivers, and finally identify some actions to mitigate risks.


Assuntos
Bactérias , Infecções Bacterianas , Animais , Antibacterianos/farmacologia , Bactérias/genética , Infecções Bacterianas/tratamento farmacológico , Farmacorresistência Bacteriana , Resistência Microbiana a Medicamentos/genética
12.
Sci Total Environ ; 812: 151433, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34748849

RESUMO

The spread of antibiotic resistance among bacterial pathogens is to a large extent mediated by mobile antibiotic resistance genes (ARGs). The prevalence and geographic distribution of several newly discovered ARGs, as well as some clinically important ARGs conferring resistance to last resort antibiotics, are largely unknown. Targeted analysis of wastewater samples could allow estimations of carriage in the population connected to the sewers as well as release to the environment. Here we quantified ARGs conferring resistance to linezolid (optrA and cfr(A)) and colistin (mcr-1, -2, -3, -4 and -5) and the recently discovered gar (aminoglycoside ARG) and sul4 (sulphonamide ARG) in raw hospital and municipal wastewater as well as treated municipal wastewater during five years in a low antibiotic resistance prevalence setting (Gothenburg, Sweden). Additionally, variations in bacterial composition of the wastewaters characterized by 16S rRNA sequencing were related to the variations of the ARGs in an attempt to reveal if the presence of known or suspected bacterial host taxa could explain the presence of the ARGs in wastewater. The mcr-1, mcr-3, mcr-4, mcr-5, sul4 and gar genes were detected regularly in all types of wastewater samples while optrA and cfr(A) were detected only in hospital wastewater. The most abundant genes were mcr-3 and mcr-5, especially in municipal wastewater. The detection of optrA was restricted to a peak during one year. Most of the ARGs correlated with taxa previously described as bacterial hosts and associated with humans. Although some of the tentative hosts may include bacteria also thriving in wastewater environments, detection of the ARGs in the wastewaters could reflect their presence in the gut flora of the contributing populations. If so, they could already today or in the near future hinder treatment of bacterial infections in a setting where they currently are rarely targeted/detected during clinical surveillance.


Assuntos
Antibacterianos , Águas Residuárias , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Hospitais , Humanos , RNA Ribossômico 16S , Suécia
13.
Artigo em Inglês | MEDLINE | ID: mdl-34902088

RESUMO

To investigate whether wastewater treatment plant (WWTP) workers and residents living in close proximity to a WWTP have elevated carriage rates of ESBL-producing Enterobacterales, as compared to the general population. From 2018 to 2020, we carried out a cross-sectional study in Germany, the Netherlands, and Romania among WWTP workers (N = 344), nearby residents (living ≤ 300 m away from WWTPs; N = 431) and distant residents (living ≥ 1000 m away = reference group; N = 1165). We collected information on potential confounders via questionnaire. Culture of participants' stool samples was performed with ChromID®-ESBL agar plates and species identification with MALDI-TOF-MS. We used logistic regression to estimate the odds ratio (OR) for carrying ESBL-producing E. coli (ESBL-EC). Sensitivity analyses included stratification by country and interaction models using country as secondary exposure. Prevalence of ESBL-EC was 11% (workers), 29% (nearby residents), and 7% (distant residents), and higher in Romania (28%) than in Germany (7%) and the Netherlands (6%). Models stratified by country showed that within the Romanian population, WWTP workers are about twice as likely (aOR = 2.34, 95% CI: 1.22-4.50) and nearby residents about three times as likely (aOR = 3.17, 95% CI: 1.80-5.59) to be ESBL-EC carriers, when compared with distant residents. In stratified analyses by country, we found an increased risk for carriage of ESBL-EC in Romanian workers and nearby residents. This effect was higher for nearby residents than for workers, which suggests that, for nearby residents, factors other than the local WWTP could contribute to the increased carriage.

14.
Water Res ; 200: 117261, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34082263

RESUMO

Carbapenemase-producing Enterobacterales (CPE) constitute a significant threat to healthcare systems. Continuous surveillance is important for the management and early warning of these bacteria. Sewage monitoring has been suggested as a possible resource-efficient complement to traditional clinical surveillance. It should not least be suitable for rare forms of resistance since a single sewage sample contains bacteria from a large number of individuals. Here, the value of sewage monitoring in early warning of CPE was assessed at the Sahlgrenska University Hospital in Gothenburg, Sweden, a setting with low prevalence of CPE. Twenty composite hospital sewage samples were collected during a two-year period. Carbapenemase genes in the complex samples were analyzed by quantitative PCR and the CPE loads were assessed through cultures on CPE-selective agar followed by species determination as well as phenotypic and genotypic tests targeting carbapenemases of presumed CPE. The findings were related to CPE detected in hospitalized patients. A subset of CPE isolates from sewage and patients were subjected to whole genome sequencing. For three of the investigated carbapenemase genes, blaNDM, blaOXA-48-like and blaKPC, there was concordance between gene levels and abundance of corresponding CPE in sewage. For the other two analyzed genes, blaVIM and blaIMP, there was no such concordance, most likely due to the presence of those genes in non-Enterobacterales populating the sewage samples. In line with the detection of OXA-48-like- and NDM-producing CPE in sewage, these were also the most commonly detected CPE in patients. NDM-producing CPE were detected on a single occasion in sewage and isolated strains were shown to match strains detected in a patient. A marked peak in CPE producing OXA-48-like enzymes was observed in sewage during a few months. When levels started to increase there were no known cases of such CPE at the hospital but soon after a few cases were detected in samples from patients. The OXA-48-like-producing CPE from sewage and patients represented different strains, but they carried similar blaOXA-48-like-harbouring mobile genetic elements. In conclusion, sewage analyses show both promise and limitations as a complement to traditional clinical resistance surveillance for early warning of rare forms of resistance. Further evaluation and careful interpretation are needed to fully assess the value of such a sewage monitoring system.


Assuntos
Infecções por Enterobacteriaceae , Esgotos , Proteínas de Bactérias/genética , Hospitais , Humanos , Testes de Sensibilidade Microbiana , Prevalência , Suécia , beta-Lactamases/genética
15.
Antibiotics (Basel) ; 10(5)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919179

RESUMO

Antibiotic resistance has become a serious global health threat. Wastewater treatment plants may become unintentional collection points for bacteria resistant to antimicrobials. Little is known about the transmission of antibiotic resistance from wastewater treatment plants to humans, most importantly to wastewater treatment plant workers and residents living in the vicinity. We aim to deliver precise information about the methods used in the AWARE (Antibiotic Resistance in Wastewater: Transmission Risks for Employees and Residents around Wastewater Treatment Plants) study. Within the AWARE study, we gathered data on the prevalence of two antibiotic resistance phenotypes, ESBL-producing E. coli and carbapenemase-producing Enterobacteriaceae, as well as on their corresponding antibiotic resistance genes isolated from air, water, and sewage samples taken from inside and outside of different wastewater treatment plants in Germany, the Netherlands, and Romania. Additionally, we analysed stool samples of wastewater treatment plant workers, nearby residents, and members of a comparison group living ≥1000 m away from the closest WWTP. To our knowledge, this is the first study investigating the potential spread of ESBL-producing E. coli, carbapenemase-producing Enterobacteriaceae, and antibiotic resistance genes from WWTPs to workers, the environment, and nearby residents. Quantifying the contribution of different wastewater treatment processes to the removal efficiency of ESBL-producing E. coli, carbapenemase-producing Enterobacteriaceae, and antibiotic resistance genes will provide us with evidence-based support for possible mitigation strategies.

16.
Environ Pollut ; 276: 116733, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33631686

RESUMO

Horizontal gene transfer (HGT) plays an important role in the dissemination of antibiotic resistance genes. In sewer systems, human-associated and environmental bacteria are mixed together and exposed to many substances known to increase HGT, including various antibacterial compounds. In wastewaters, those substances are most often detected below concentrations known to induce HGT individually. Still, it is possible that such wastewaters induce HGT, for example via mixture effects. Here, a panel of antibiotics, biocides and other pharmaceuticals was measured in filter-sterilized municipal and hospital wastewater samples from Gothenburg, Sweden. The effects on HGT of the chemical mixtures in these samples were investigated by exposing a complex bacterial donor community together with a GFP-tagged E. coli recipient strain. Recipients that captured sulfonamide resistance-conferring mobile genetic elements (MGEs) from the bacterial community were enumerated and characterized by replicon typing, antibiotic susceptibility testing and long read sequencing. While exposure to municipal wastewater did not result in any detectable change in HGT rates, exposure to hospital wastewater was associated with an increase in the proportion of recipients that acquired sulfonamide resistance but also a drastic decrease in the total number of recipients. Although, concentrations were generally higher in hospital than municipal wastewater, none of the measured substances could individually explain the observed effects of hospital wastewater. The great majority of the MGEs captured were IncN plasmids, and resistance to several antibiotics was co-transferred in most cases. Taken together, the data show no evidence that chemicals present in the studied municipal wastewater induce HGT. Still, the increased relative abundance of transconjugants after exposure to hospital wastewater could have implications for the risks of both emergence and transmission of resistant bacteria.


Assuntos
Transferência Genética Horizontal , Águas Residuárias , Antibacterianos , Escherichia coli/genética , Hospitais , Humanos , Plasmídeos , Suécia
17.
Environ Int ; 150: 106436, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33592450

RESUMO

There is a risk that residues of antibiotics and other antimicrobials in hospital and municipal wastewaters could select for resistant bacteria. Still, direct experimental evidence for selection is lacking. Here, we investigated if effluent from a large Swedish hospital, as well as influent and effluent from the connected municipal wastewater treatment plant (WWTP) select for antibiotic resistant Escherichia coli in three controlled experimental setups. Exposure of sterile-filtered hospital effluent to a planktonic mix of 149 different E. coli wastewater isolates showed a strong selection of multi-resistant strains. Accordingly, exposure to a complex wastewater community selected for strains resistant to several antibiotic classes. Exposing individual strains with variable resistance patterns revealed a rapid bactericidal effect of hospital effluent on susceptible, but not multi-resistant E. coli. No selection was observed after exposure to WWTP effluent, while exposure to WWTP influent indicated a small selective effect for ceftazidime and cefadroxil resistant strains, and only in the E. coli mix assay. An analysis of commonly used antibiotics and non-antibiotic pharmaceuticals in combination with growth and resistance pattern of individual E. coli isolates suggested a possible contribution of ciprofloxacin and ß-lactams to the selection by hospital effluent. However, more research is needed to clarify the contribution from different selective agents. While this study does not indicate selection by the studied WWTP effluent, there is some indications of selective effects by municipal influent on ß-lactam-resistant strains. Such effects may be more pronounced in countries with higher antibiotic use than Sweden. Despite the limited antibiotic use in Sweden, the hospital effluent strongly and consistently selected for multi-resistance, indicating widespread risks. Hence, there is an urgent need for further evaluation of risks for resistance selection in hospital sewers, as well as for strategies to remove selective agents and resistant bacteria.


Assuntos
Escherichia coli , Águas Residuárias , Antibacterianos/farmacologia , Hospitais , Suécia
18.
Commun Biol ; 3(1): 711, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33244050

RESUMO

Antibiotic resistance surveillance through regional and up-to-date testing of clinical isolates is a foundation for implementing effective empirical treatment. Surveillance data also provides an overview of geographical and temporal changes that are invaluable for guiding interventions. Still, due to limited infrastructure and resources, clinical surveillance data is lacking in many parts of the world. Given that sewage is largely made up of human fecal bacteria from many people, sewage epidemiology could provide a cost-efficient strategy to partly fill the current gap in clinical surveillance of antibiotic resistance. Here we explored the potential of sewage metagenomic data to assess clinical antibiotic resistance prevalence using environmental and clinical surveillance data from across the world. The sewage resistome correlated to clinical surveillance data of invasive Escherichia coli isolates, but none of several tested approaches provided a sufficient resolution for clear discrimination between resistance towards different classes of antibiotics. However, in combination with socioeconomic data, the overall clinical resistance situation could be predicted with good precision. We conclude that analyses of bacterial genes in sewage could contribute to informing management of antibiotic resistance.


Assuntos
Antibacterianos/farmacologia , Bactérias , Farmacorresistência Bacteriana/genética , Metagenômica/métodos , Esgotos/microbiologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Fezes/microbiologia , Humanos , Modelos Estatísticos , Prevalência , Vigilância em Saúde Pública
19.
mSphere ; 5(5)2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32878926

RESUMO

Insertion sequences (ISs) are abundant mobile genetic elements on bacterial genomes, responsible for mobilization of many genes, including antibiotic resistance genes (ARGs). As ARGs often occur in similar genetic contexts, understanding which ISs tend to be associated with known ARGs could be a first step toward discovering novel ARGs through predictive or experimental strategies. This could be valuable, as early identification of ARGs in pathogens could facilitate surveillance, confinement actions, molecular diagnostics, and drug development. Here, we present a comprehensive analysis of the association of specific ISs with known ARGs. A large collection of bacterial genomes was used to characterize the immediate context of 2,437 known ARGs and 3,768 ISs. While many ARGs were consistently found close to specific ISs, the contexts around all ISs were more variable. Nevertheless, a subset of individual ISs, as well as tentative composite transposons, showed significant associations with ARGs. These included, e.g., insertion sequences classified as IS6, Tn3, IS4, and IS1 that were not only strongly associated with diverse ARGs but also highly abundant in pathogens. Therefore, we conclude that the context of this subset of ISs and tentative composite transposons would be particularly valuable to discover novel ARGs through modeling or empirical approaches. A set of 1,891 metagenomes were analyzed to identify environments where those ISs commonly associated with ARGs were particularly abundant. The associations found in metagenomes were similar to those found in genomes.IMPORTANCE The emergence and spread of antibiotic resistance genes (ARGs) among pathogens threaten the prevention and treatment of bacterial infections as well as our food production chains. Early knowledge about mobile ARGs that are present in pathogens or that have the potential to become clinically relevant could help mitigate potential negative consequences. Recently, exploring integron gene cassettes was shown to be successful for identifying novel mobilized ARGs, some of which were already circulating in pathogens. Still, only a subset of ARGs is mobilized by integrons, and the contexts of other mobile genetic elements associated with ARGs remain unexplored. This includes insertion sequences (ISs) responsible for the mobilization of many ARGs. Our analyses identified ISs, species, and environments where ARG-IS relationships are particularly strong. This could be a first step to guide the discovery of novel ARGs, while also providing insights into mechanisms involved in the mobilization and transfer of ARGs.


Assuntos
Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Genoma Bacteriano , Metagenoma , Mutagênese Insercional , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos
20.
Environ Int ; 144: 106083, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32890888

RESUMO

Antibiotic resistance presents a serious and still growing threat to human health. Environmental exposure levels required to select for resistance are unknown for most antibiotics. Here, we evaluated different experimental approaches and ways to interpret effect measures, in order to identify what concentration of trimethoprim that are likely to select for resistance in aquatic environments. When grown in complex biofilms, selection for resistant E. coli increased at 100 µg/L, whereas there was only a non-significant trend with regards to changes in taxonomic composition within the tested range (0-100 µg/L). Planktonic co-culturing of 149 different E. coli strains isolated from sewage again confirmed selection at 100 µg/L. Finally, pairwise competition experiments were performed with engineered E. coli strains carrying different trimethoprim resistance genes (dfr) and their sensitive counterparts. While strains with introduced resistance genes grew slower than the sensitive ones at 0 and 10 µg/L, a significant reduction in cost was found already at 10 µg/L. Defining lowest effect concentrations by comparing proportion of resistant strains to sensitive ones at the same time point, rather than to their initial ratios, will reflect the advantage a resistance factor can bring, while ignoring exposure-independent fitness costs. As costs are likely to be highly dependent on the specific environmental and genetic contexts, the former approach might be more suitable as a basis for defining exposure limits with the intention to prevent selection for resistance. Based on the present and other studies, we propose that 1 µg/L would be a reasonably protective exposure limit for trimethoprim in aquatic environments.


Assuntos
Escherichia coli , Resistência a Trimetoprima , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Escherichia coli/genética , Humanos , Trimetoprima/toxicidade , Resistência a Trimetoprima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...