Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(9): e0221928, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31490968

RESUMO

African swine fever (ASF) is a haemorrhagic contagious pig disease generally causing high mortality. ASF is enzootic in Madagascar with outbreaks reported each year. An ASF outbreak occurred in May 2015 in the municipality of Imerintsiatosika in Madagascar. We investigated the outbreak to describe it and to identify risk factors in order to propose control measures, and to document evidence of an ASF outbreak in an enzootic country. We took biological samples from very sick and dying pigs, sold by the farmer to the butcher, for PCR analysis. An active search for all possible farm-cases was carried out. A definition of suspected farm-case was established and we implemented a descriptive survey and a retrospective cohort study. Laboratory results confirmed ASF virus infection. Suspected farm-cases represented 81 farms out of 922. Out of 3081 pigs of infected farms, 44% (95% CI: 42-46%) were sick, of which 47% were sold or slaughtered. Case fatality was 60% (95% CI: 56-63%) while 21% (95% CI: 19-24%) of the diseased pigs recovered. The outbreak duration was nine months and half of the infected farms' pig population remained after the outbreak. Compared to the exotic breed, local pigs had twice the risk of infection. It is the first detailed report of an ASF outbreak in an enzootic situation. The disease still has a large impact with 50% animals lost. However, the case fatality is lower than expected that suggests the possibility of resistance and subclinical cases. Proximity to road and increased number of farms are risk factors so biosecurity measures are needed. Further studies are needed to understand why pigs of local breed are more affected. Finally, an acceptable alternative to the sale of sick animals should be found as this currently is the breeders' means to reducing economic loss.


Assuntos
Febre Suína Africana/epidemiologia , Surtos de Doenças/estatística & dados numéricos , Febre Suína Africana/mortalidade , Febre Suína Africana/transmissão , Animais , Incidência , Madagáscar/epidemiologia , Fatores de Risco , Suínos
2.
BMC Health Serv Res ; 18(1): 265, 2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29631631

RESUMO

BACKGROUND: The Integrated Disease Surveillance and Response (IDSR) strategy was introduced in Madagascar in 2007. Information was collected by Healthcare structures (HS) on paper forms and transferred to the central level by post or email. Completeness of data reporting was around 20% in 2009-10. From 2011, in two southern regions data were transmitted through short messages service using one telephone provider. We evaluated the system in 2014-15 to determine its performance before changing or expanding it. METHODS: We randomly selected 80 HS and interviewed their representatives face-to-face (42) or by telephone (38). We evaluated knowledge of surveillance activities and selected case definitions, number of SMS with erroneous or missing information among the last ten transferred SMS, proportion of weekly reports received in the last 4 weeks and of the last four health alerts notified within 48 h, as well as mobile phone network coverage. RESULTS: Sixty-four percent of 80 interviewed HS representatives didn't know their terms of reference, 83% were familiar with the malaria case definition and 32% with that of dengue. Ninety percent (37/41) of visited HS had five or more errors and 47% had missing data in the last ten SMS they transferred. The average time needed for weekly IDSR data compilation was 24 min in the Southern and 47 in the South-eastern region. Of 320 expected SMS 232 (73%) were received, 136 (43%) of them in time. Out of 38 alerts detected, four were notified on time. Nine percent (7/80) of HS had no telephone network with the current provider. CONCLUSIONS: SMS transfer has improved IDSR data completeness, but timeliness and data quality remain a problem. Healthcare staff needs training on guidelines and case definitions. From 2016, data are collected and managed electronically to reduce errors and improve the system's performance.


Assuntos
Surtos de Doenças/prevenção & controle , Sistemas de Informação em Saúde/normas , Vigilância da População/métodos , Envio de Mensagens de Texto , Telefone Celular , Estudos de Avaliação como Assunto , Pesquisa sobre Serviços de Saúde , Humanos , Madagáscar/epidemiologia , Envio de Mensagens de Texto/estatística & dados numéricos
3.
Front Public Health ; 5: 162, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28730149

RESUMO

Antimicrobial resistance (AMR) is a major threat to human, animal health, and environment worldwide. For human, transmission occurred through a variety of routes both in health-care settings and community. In animals, AMR was reported in livestock, pets, and wildlife; transmission of AMR can be zoonotic with the probably most important route being foodborne transmission. The Indian Ocean Commission (IOC), composed of Comoros, Madagascar, Mauritius, Reunion (France), and Seychelles recognized the surveillance of AMR in both animal and human as a main public health priority for the region. Mayotte, French overseas territory, located in Comoros archipelago, was also included in this review. This review summarized our best epidemiological knowledge regarding AMR in Indian Ocean. We documented the prevalence, and phenotypic and genotypic profiles of prone to resistance Gram-positive and Gram-negative bacteria both in animals and humans. Our review clearly pointed out extended-spectrum ß-lactamase and carbapenemase-producing Enterobacteriaceae as main human and animal health issue in IOC. However, publications on AMR are scarce, particularly in Comoros, Mayotte, and Seychelles. Thus, research and surveillance priorities were recommended (i) estimating the volume of antimicrobial drugs used in livestock and human medicine in the different territories [mainly third generation cephalosporin (3GC)]; (ii) developing a "One Health" surveillance approach with epidemiological indicators as zoonotic foodborne pathogen (i.e., couple Escherichia coli resistance to 3GC/carbapenems); (iii) screening travelers with a history of hospitalization and consumption of antibiotic drug returning from at risk areas (e.g., mcr-1 transmission with China or hajj pilgrims) allowing an early warning detection of the emergence for quick control measures implementation in IOC.

4.
Pan Afr Med J ; 26: 195, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28674588

RESUMO

INTRODUCTION: Following the 2005-6 chikungunya outbreak, a project to strengthen regional Public Health preparedness in the Indian Ocean was implemented. It includes the Comoros, Madagascar, Mauritius, Reunion (France) and Seychelles. A Field Epidemiology Training Programme (FETP-OI) was started in 2011 to develop a pool of well-trained intervention epidemiologists. METHODS: The FETP-OI consists of two years of supervised, learning-by-doing, on-the-job training at national sites involved in disease surveillance and response. It includes work placements at the Madagascar Pasteur Institute and the French regional epidemiology unit in Reunion and up to three training courses per year. Training objectives include epidemiological surveillance, outbreak investigations, research studies, scientific communication and transfer of competencies. RESULTS: In four years, two cohorts of in total 15 fellows originating from four countries followed the FETP-OI. They led 42 surveillance projects (71% routine management, 14% evaluations, 12% setup, 3% other) and investigated 36 outbreak alerts, 58% of them in Madagascar; most investigations (72%) concerned foodborne pathogens, plague or malaria. Fellows performed 18 studies (44% descriptive analyses, 22% disease risk factors, and 34% on other subjects), and presented results during regional and international conferences through 26 oral and 15 poster presentations. Four articles were published in regional Public Health bulletins and several scientific manuscripts are in process. CONCLUSION: The FETP-OI has created a regional force of intervention consisting of field epidemiologists and trained supervisors using the same technical language and epidemiological methods. The third cohort is now ongoing. Technically and financially sustainable FETP-OI projects help addressing public health priorities of the Indian Ocean.


Assuntos
Surtos de Doenças/prevenção & controle , Epidemiologia/educação , Saúde Pública/educação , Febre de Chikungunya/epidemiologia , Humanos , Oceano Índico , Vigilância da População , Desenvolvimento de Programas , Avaliação de Programas e Projetos de Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...