Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Gerontol A Biol Sci Med Sci ; 76(5): 786-795, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33491046

RESUMO

Despite enormous research efforts, the genetic component of longevity has remained largely elusive. The investigation of common variants, mainly located in intronic or regulatory regions, has yielded only little new information on the heritability of the phenotype. Here, we performed a chip-based exome-wide association study investigating 62 488 common and rare coding variants in 1248 German long-lived individuals, including 599 centenarians and 6941 younger controls (age < 60 years). In a single-variant analysis, we observed an exome-wide significant association between rs1046896 in the gene fructosamine-3-kinase-related-protein (FN3KRP) and longevity. Noteworthy, we found the longevity allele C of rs1046896 to be associated with an increased FN3KRP expression in whole blood; a database look-up confirmed this effect for various other human tissues. A gene-based analysis, in which potential cumulative effects of common and rare variants were considered, yielded the gene phosphoglycolate phosphatase (PGP) as another potential longevity gene, though no single variant in PGP reached the discovery p-value (1 × 10E-04). Furthermore, we validated the previously reported longevity locus cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1). Replication of our results in a French longevity cohort was only successful for rs1063192 in CDKN2B-AS1. In conclusion, we identified 2 new potential candidate longevity genes, FN3KRP and PGP which may influence the phenotype through their role in metabolic processes, that is, the reverse glycation of proteins (FN3KRP) and the control of glycerol-3-phosphate levels (PGP).


Assuntos
Longevidade/genética , Monoéster Fosfórico Hidrolases/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Idoso de 80 Anos ou mais , Alelos , Estudos de Casos e Controles , Exoma/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade
2.
Hum Mol Genet ; 29(7): 1154-1167, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32160291

RESUMO

Human longevity is a complex trait influenced by both genetic and environmental factors, whose interaction is mediated by epigenetic mechanisms like DNA methylation. Here, we generated genome-wide whole-blood methylome data from 267 individuals, of which 71 were long-lived (90-104 years), by applying reduced representation bisulfite sequencing. We followed a stringent two-stage analysis procedure using discovery and replication samples to detect differentially methylated sites (DMSs) between young and long-lived study participants. Additionally, we performed a DNA methylation quantitative trait loci analysis to identify DMSs that underlie the longevity phenotype. We combined the DMSs results with gene expression data as an indicator of functional relevance. This approach yielded 21 new candidate genes, the majority of which are involved in neurophysiological processes or cancer. Notably, two candidates (PVRL2, ERCC1) are located on chromosome 19q, in close proximity to the well-known longevity- and Alzheimer's disease-associated loci APOE and TOMM40. We propose this region as a longevity hub, operating on both a genetic (APOE, TOMM40) and an epigenetic (PVRL2, ERCC1) level. We hypothesize that the heritable methylation and associated gene expression changes reported here are overall advantageous for the LLI and may prevent/postpone age-related diseases and facilitate survival into very old age.


Assuntos
Apolipoproteínas E/genética , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Longevidade/genética , Proteínas de Membrana Transportadoras/genética , Nectinas/genética , Idoso de 80 Anos ou mais , Metilação de DNA/genética , Epigênese Genética/genética , Epigenoma/genética , Feminino , Regulação da Expressão Gênica/genética , Genoma Humano/genética , Humanos , Masculino , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial
5.
Nat Commun ; 8(1): 2063, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29234056

RESUMO

FOXO3 is consistently annotated as a human longevity gene. However, functional variants and underlying mechanisms for the association remain unknown. Here, we perform resequencing of the FOXO3 locus and single-nucleotide variant (SNV) genotyping in three European populations. We find two FOXO3 SNVs, rs12206094 and rs4946935, to be most significantly associated with longevity and further characterize them functionally. We experimentally validate the in silico predicted allele-dependent binding of transcription factors (CTCF, SRF) to the SNVs. Specifically, in luciferase reporter assays, the longevity alleles of both variants show considerable enhancer activities that are reversed by IGF-1 treatment. An eQTL database search reveals that the alleles are also associated with higher FOXO3 mRNA expression in various human tissues, which is in line with observations in long-lived model organisms. In summary, we present experimental evidence for a functional link between common intronic variants in FOXO3 and human longevity.


Assuntos
Proteína Forkhead Box O3/fisiologia , Longevidade/genética , Polimorfismo de Nucleotídeo Único/genética , População Branca/genética , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Alelos , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Simulação por Computador , Feminino , Proteína Forkhead Box O3/genética , Haplótipos/genética , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Íntrons/genética , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo
6.
Aging Cell ; 16(4): 716-725, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28421666

RESUMO

Human longevity is a complex phenotype influenced by genetic and environmental components. Unraveling the contribution of genetic vs. nongenetic factors to longevity is a challenging task. Here, we conducted a large-scale RNA-sequencing-based expression quantitative trait loci study (eQTL) with subsequent heritability analysis. The investigation was performed on blood samples from 244 individuals from Germany and Denmark, representing various age groups including long-lived subjects up to the age of 104 years. Our eQTL-based approach revealed for the first time that human longevity is associated with a depletion of metabolic pathways in a genotype-dependent and independent manner. Further analyses indicated that 20% of the differentially expressed genes are influenced by genetic variants in cis. The subsequent study of twins showed that the transcriptional activity of a third of the differentially regulated genes is heritable. These findings suggest that longevity-associated biological processes such as altered metabolism are, to a certain extent, also the driving force of longevity rather than just a consequence of old age.


Assuntos
Longevidade/genética , Redes e Vias Metabólicas/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Transcriptoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Dinamarca , Genoma Humano , Genótipo , Alemanha , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Estudos Longitudinais , Pessoa de Meia-Idade , Característica Quantitativa Herdável , Gêmeos Dizigóticos , Gêmeos Monozigóticos
7.
J Gerontol A Biol Sci Med Sci ; 72(8): 1038-1044, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27365368

RESUMO

Growth pathways play key roles in longevity. The present study tested single-nucleotide polymorphisms (SNPs) in the connective tissue growth factor gene (CTGF) and the epidermal growth factor receptor gene (EGFR) for association with longevity. Comparison of allele and genotype frequencies of 12 CTGF SNPs and 41 EGFR SNPs between 440 American men of Japanese ancestry aged ≥95 years and 374 men of average life span revealed association with longevity at the p < .05 level for 2 SNPs in CTGF and 7 in EGFR. Two in CTGF and two in EGFR remained significant after Bonferroni correction. The SNPs of both CTGF and EGFR were in a haplotype block in each respective gene. Haplotype analysis confirmed the suggestive association found by χ2 analysis. We noted an excess of heterozygotes among the longevity cases, consistent with heterozygote advantage in living to extreme old age. No associations of the most significant SNPs were observed in whites or Koreans. In conclusion, the present findings indicate that genetic variation in CTGF and EGFR may contribute to the attainment of extreme old age in Japanese. More research is needed to confirm that genetic variation in CTGF and EGFR contributes to the attainment of extreme old age across human populations.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/genética , Receptores ErbB/genética , Longevidade/genética , Idoso de 80 Anos ou mais , Povo Asiático/genética , Variação Genética , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Estados Unidos/epidemiologia , População Branca/genética
8.
Basic Res Cardiol ; 111(3): 36, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27138930

RESUMO

Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia with a strong genetic component. Molecular pathways involving the homeodomain transcription factor Shox2 control the development and function of the cardiac conduction system in mouse and zebrafish. Here we report the analysis of human SHOX2 as a potential susceptibility gene for early-onset AF. To identify causal variants and define the underlying mechanisms, results from 378 patients with early-onset AF before the age of 60 years were analyzed and compared to 1870 controls or reference datasets. We identified two missense mutations (p.G81E, p.H283Q), that were predicted as damaging. Transactivation studies using SHOX2 targets and phenotypic rescue experiments in zebrafish demonstrated that the p.H283Q mutation severely affects SHOX2 pacemaker function. We also demonstrate an association between a 3'UTR variant c.*28T>C of SHOX2 and AF (p = 0.00515). Patients carrying this variant present significantly longer PR intervals. Mechanistically, this variant creates a functional binding site for hsa-miR-92b-5p. Circulating hsa-miR-92b-5p plasma levels were significantly altered in AF patients carrying the 3'UTR variant (p = 0.0095). Finally, we demonstrate significantly reduced SHOX2 expression levels in right atrial appendages of AF patients compared to patients with sinus rhythm. Together, these results suggest a genetic contribution of SHOX2 in early-onset AF.


Assuntos
Fibrilação Atrial/genética , Predisposição Genética para Doença/genética , Proteínas de Homeodomínio/genética , Adolescente , Animais , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Reação em Cadeia da Polimerase , Transfecção , Adulto Jovem , Peixe-Zebra
9.
Aging Cell ; 15(3): 585-8, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27004735

RESUMO

Human longevity is characterized by a remarkable lack of confirmed genetic associations. Here, we report on the identification of a novel locus for longevity in the RAD50/IL13 region on chromosome 5q31.1 using a combined European sample of 3208 long-lived individuals (LLI) and 8919 younger controls. First, we performed a large-scale association study on 1458 German LLI (mean age 99.0 years) and 6368 controls (mean age 57.2 years) by targeting known immune-associated loci covered by the Immunochip. The analysis of 142 136 autosomal single nucleotide polymorphisms (SNPs) revealed an Immunochip-wide significant signal (PI mmunochip  = 7.01 × 10(-9) ) for the SNP rs2075650 in the TOMM40/APOE region, which has been previously described in the context of human longevity. To identify novel susceptibility loci, we selected 15 markers with PI mmunochip  < 5 × 10(-4) for replication in two samples from France (1257 LLI, mean age 102.4 years; 1811 controls, mean age 49.1 years) and Denmark (493 LLI, mean age 96.2 years; 740 controls, mean age 63.1 years). The association at SNP rs2706372 replicated in the French study collection and showed a similar trend in the Danish participants and was also significant in a meta-analysis of the combined French and Danish data after adjusting for multiple testing. In a meta-analysis of all three samples, rs2706372 reached a P-value of PI mmunochip+Repl  = 5.42 × 10(-7) (OR = 1.20; 95% CI = 1.12-1.28). SNP rs2706372 is located in the extended RAD50/IL13 region. RAD50 seems a plausible longevity candidate due to its involvement in DNA repair and inflammation. Further studies are needed to identify the functional variant(s) that predispose(s) to a long and healthy life.


Assuntos
Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Estudo de Associação Genômica Ampla , Interleucina-13/genética , Longevidade/genética , Longevidade/imunologia , Análise de Sequência com Séries de Oligonucleotídeos , Hidrolases Anidrido Ácido , Cromossomos Humanos Par 5/genética , Loci Gênicos , Humanos
10.
J Autoimmun ; 61: 36-44, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26032265

RESUMO

Low-affinity Fcγ receptors (FcγR) bridge innate and adaptive immune responses. In many autoimmune diseases, these receptors act as key mediators of the pathogenic effects of autoantibodies. Genes encoding FcγR exhibit frequent variations in sequence and gene copy number that influence their functional properties. FcγR variations also affect the susceptibility to systemic autoimmunity, e.g. systemic lupus erythematosus and rheumatoid arthritis. This raises the question whether FcγR variations are also associated with organ-specific autoimmunity, particularly autoantibody-mediated diseases, such as subepidermal autoimmune blistering diseases (AIBD). A multitude of evidence suggests a pathogenic role of neutrophil granulocyte interaction with autoantibodies via FcγR. In a two-stage study, we analyzed whether the FcγR genotype affects neutrophil function and mRNA expression, and consequently, bullous pemphigoid (BP) disease risk. We compared this to findings in pemphigus vulgaris/foliaceus (PV/PF), two Fc-independent AIBDs. Our results indicate that both allele and copy number variation of FcγR genes affect FcγR mRNA expression and reactive oxygen species (ROS) release by granulocytes. Susceptibility of BP was associated with FcγR genotypes that led to a decreased ROS release by neutrophils, indicating an unexpected protective role for these cells. BP and PV/PF differed substantially regarding the FcγR genotype association patterns, pointing towards different disease etiologies.


Assuntos
Doenças Autoimunes/imunologia , Vesícula/imunologia , Variações do Número de Cópias de DNA/imunologia , Granulócitos/imunologia , Receptores de IgG/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Doenças Autoimunes/genética , Vesícula/genética , Estudos de Casos e Controles , Criança , Pré-Escolar , Variações do Número de Cópias de DNA/genética , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Expressão Gênica/imunologia , Frequência do Gene , Predisposição Genética para Doença/genética , Genótipo , Granulócitos/metabolismo , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Receptores de IgG/genética
11.
J Clin Periodontol ; 41(6): 531-40, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24708273

RESUMO

AIM: Identification of variants within genes SLC23A1 and SLC23A2 coding for vitamin C transporter proteins associated with aggressive (AgP) and chronic periodontitis (CP). MATERIAL AND METHODS: Employment of three independent case-control samples of AgP (I. 283 cases, 979 controls; II. 417 cases, 1912 controls; III. 164 cases, 357 controls) and one sample of CP (1359 cases, 1296 controls). RESULTS: Stage 1: Among the tested single-nucleotide polymorphisms (SNPs), the rare allele (RA) of rs6596473 in SLC23A1 showed nominal significant association with AgP (p = 0.026, odds ratio [OR] 1.26, and a highly similar minor allele frequency between different control panels. Stage 2: rs6596473 showed no significant association with AgP in the replication with the German and Dutch case-control samples. After pooling the German AgP populations (674 cases, 2891 controls) to significantly increase the statistical power (SP = 0.81), rs6596473 RA showed significant association with AgP prior to and upon adjustment with the covariates smoking and gender with padj  = 0.005, OR = 1.35. Stage 3: RA of rs6596473 showed no significant association with severe CP. CONCLUSION: SNP rs6596473 of SLC23A1 is suggested to be associated with AgP. These results add to previous reports that vitamin C plays a role in the pathogenesis of periodontitis.


Assuntos
Periodontite Agressiva/genética , Polimorfismo de Nucleotídeo Único/genética , Transportadores de Sódio Acoplados à Vitamina C/genética , Adulto , Idoso de 80 Anos ou mais , Perda do Osso Alveolar/genética , Estudos de Casos e Controles , Periodontite Crônica/genética , Feminino , Frequência do Gene/genética , Variação Genética/genética , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Fatores Sexuais , Fumar
12.
Hum Mol Genet ; 23(16): 4420-32, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24688116

RESUMO

The genetic contribution to the variation in human lifespan is ∼ 25%. Despite the large number of identified disease-susceptibility loci, it is not known which loci influence population mortality. We performed a genome-wide association meta-analysis of 7729 long-lived individuals of European descent (≥ 85 years) and 16 121 younger controls (<65 years) followed by replication in an additional set of 13 060 long-lived individuals and 61 156 controls. In addition, we performed a subset analysis in cases aged ≥ 90 years. We observed genome-wide significant association with longevity, as reflected by survival to ages beyond 90 years, at a novel locus, rs2149954, on chromosome 5q33.3 (OR = 1.10, P = 1.74 × 10(-8)). We also confirmed association of rs4420638 on chromosome 19q13.32 (OR = 0.72, P = 3.40 × 10(-36)), representing the TOMM40/APOE/APOC1 locus. In a prospective meta-analysis (n = 34 103), the minor allele of rs2149954 (T) on chromosome 5q33.3 associates with increased survival (HR = 0.95, P = 0.003). This allele has previously been reported to associate with low blood pressure in middle age. Interestingly, the minor allele (T) associates with decreased cardiovascular mortality risk, independent of blood pressure. We report on the first GWAS-identified longevity locus on chromosome 5q33.3 influencing survival in the general European population. The minor allele of this locus associates with low blood pressure in middle age, although the contribution of this allele to survival may be less dependent on blood pressure. Hence, the pleiotropic mechanisms by which this intragenic variation contributes to lifespan regulation have to be elucidated.


Assuntos
Loci Gênicos/fisiologia , Longevidade/genética , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Doenças Cardiovasculares/genética , Mapeamento Cromossômico , Cromossomos Humanos Par 19 , Cromossomos Humanos Par 5 , Feminino , Estudo de Associação Genômica Ampla , Humanos , Hipertensão/genética , Masculino , Fenótipo , Estudos Prospectivos , População Branca
13.
Eur J Hum Genet ; 22(9): 1131-6, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24518833

RESUMO

DNA-damage response and repair are crucial to maintain genetic stability, and are consequently considered central to aging and longevity. Here, we investigate whether this pathway overall associates to longevity, and whether specific sub-processes are more strongly associated with longevity than others. Data were applied on 592 SNPs from 77 genes involved in nine sub-processes: DNA-damage response, base excision repair (BER), nucleotide excision repair, mismatch repair, non-homologous end-joining, homologous recombinational repair (HRR), RecQ helicase activities (RECQ), telomere functioning and mitochondrial DNA processes. The study population was 1089 long-lived and 736 middle-aged Danes. A self-contained set-based test of all SNPs displayed association with longevity (P-value=9.9 × 10(-5)), supporting that the overall pathway could affect longevity. Investigation of the nine sub-processes using the competitive gene-set analysis by Wang et al indicated that BER, HRR and RECQ associated stronger with longevity than the respective remaining genes of the pathway (P-values=0.004-0.048). For HRR and RECQ, only one gene contributed to the significance, whereas for BER several genes contributed. These associations did, however, generally not pass correction for multiple testing. Still, these findings indicate that, of the entire pathway, variation in BER might influence longevity the most. These modest sized P-values were not replicated in a German sample. This might, though, be due to differences in genotyping procedures and investigated SNPs, potentially inducing differences in the coverage of gene regions. Specifically, five genes were not covered at all in the German data. Therefore, investigations in additional study populations are needed before final conclusion can be drawn.


Assuntos
Reparo do DNA/genética , Longevidade/genética , Polimorfismo de Nucleotídeo Único , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Dano ao DNA , Enzimas Reparadoras do DNA/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
14.
PLoS One ; 9(1): e86188, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465950

RESUMO

Genetic factors have been estimated to account for about 25% of the variation in an adult's life span. The complement component C4 with the isotypes C4A and C4B is an effector protein of the immune system, and differences in the overall C4 copy number or gene size (long C4L; short C4S) may influence the strength of the immune response and disease susceptibilities. Previously, an association between C4B copy number and life span was reported for Hungarians and Icelanders, where the C4B*Q0 genotype, which is defined by C4B gene deficiency, showed a decrease in frequency with age. Additionally, one of the studies indicated that a low C4B copy number might be a genetic trait that is manifested only in the presence of the environmental risk factor "smoking". These observations prompted us to investigate the role of the C4 alleles in our large German longevity sample (∼ 700 cases; 94-110 years and ∼ 900 younger controls). No significant differences in the number of C4A, C4B and C4S were detected. Besides, the C4B*Q0 carrier state did not decrease with age, irrespective of smoking as an interacting variable. However, for C4L*Q0 a significantly different carrier frequency was observed in the cases compared with controls (cases: 5.08%; controls: 9.12%; p = 0.003). In a replication sample of 714 German cases (91-108 years) and 890 controls this result was not replicated (p = 0.14) although a similar trend of decreased C4L*Q0 carrier frequency in cases was visible (cases: 7.84%; controls: 10.00%).


Assuntos
Complemento C4/genética , Variações do Número de Cópias de DNA , Longevidade/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Feminino , Frequência do Gene , Genótipo , Alemanha , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Adulto Jovem
15.
Age (Dordr) ; 36(2): 911-21, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24014251

RESUMO

Human longevity is a multifactorial phenotype influenced by both genetic and environmental factors. Despite its heritability of 25-32 %, the genetic background of longevity is as yet largely unexplained. Apart from APOE status, variation in the FOXO3A gene is the only confirmed genetic contributor to survival into old age. On the other hand, FOXO3A activity is known to be downregulated in various cancers, and the gene was recently identified as a novel deletion hotspot in human lung adenocarcinoma. In view of the strong association between smoking and lung cancer, we set out to explore whether smoking modifies the known association between FOXO3A variation and longevity. To this end, we conducted a case-control study in two different populations, drawing upon extensive collections of old-aged individuals and younger controls available to us (1,613 German centenarians/nonagenarians and 1,104 controls; 1,088 Danish nonagenarians and 736 controls). In the German sample, 21 single nucleotide polymorphisms (SNPs) from the FOXO3A gene region were genotyped, whereas 15 FOXO3A SNPs were analyzed in the Danish sample. Eight SNPs were typed in both populations. Logistic regression analysis revealed that adjustment for smoking does not systematically alter the association between FOXO3A variation and longevity in neither population. Our analysis therefore suggests that the said association is not largely due to the confounding effects of lung cancer.


Assuntos
DNA/genética , Fatores de Transcrição Forkhead/genética , Longevidade/genética , Polimorfismo de Nucleotídeo Único , Fumar/efeitos adversos , Idoso , Idoso de 80 Anos ou mais , Feminino , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/metabolismo , Variação Genética , Genótipo , Alemanha/epidemiologia , Haplótipos , Humanos , Incidência , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Pessoa de Meia-Idade , Fenótipo , Estudos Retrospectivos , Fatores de Risco , Fumar/genética
16.
Biogerontology ; 14(6): 719-27, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24146173

RESUMO

The role of superoxide dismutases (SODs) in aging and oxidative stress regulation has been widely studied and there is growing evidence that imbalances in these processes influence lifespan in several species. In humans, genetic polymorphisms in SOD genes may play an important role in the development of age-related diseases and genetic variation in SOD2 is thought to be associated with longevity. These observations prompted us to perform a case-control association study using a comprehensive haplotype tagging approach for the three SOD genes (SOD1, SOD2, SOD3) by testing a total of 19 SNPs in our extensive collection of 1,612 long-lived individuals (centenarians and nonagenarians) and 1,104 younger controls. Furthermore, we intended to replicate the previous association of the SOD2 SNP rs4880 with longevity observed in a Danish cohort. In our study, no association was detected between the tested SNPs and the longevity phenotype, neither in the entire long-lived sample set nor in the centenarian subgroup analysis. Our results suggest that there is no considerable influence of sequence variation in the SOD genes on human longevity in Germans.


Assuntos
Longevidade/genética , Polimorfismo de Nucleotídeo Único , Superóxido Dismutase/genética , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Frequência do Gene , Alemanha , Haplótipos , Humanos , Masculino , Fenótipo , Superóxido Dismutase-1
17.
Aging Cell ; 12(2): 184-93, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23286790

RESUMO

Clear evidence exists for heritability of human longevity, and much interest is focused on identifying genes associated with longer lives. To identify such longevity alleles, we performed the largest genome-wide linkage scan thus far reported. Linkage analyses included 2118 nonagenarian Caucasian sibling pairs that have been enrolled in 15 study centers of 11 European countries as part of the Genetics of Healthy Aging (GEHA) project. In the joint linkage analyses, we observed four regions that show linkage with longevity; chromosome 14q11.2 (LOD = 3.47), chromosome 17q12-q22 (LOD = 2.95), chromosome 19p13.3-p13.11 (LOD = 3.76), and chromosome 19q13.11-q13.32 (LOD = 3.57). To fine map these regions linked to longevity, we performed association analysis using GWAS data in a subgroup of 1228 unrelated nonagenarian and 1907 geographically matched controls. Using a fixed-effect meta-analysis approach, rs4420638 at the TOMM40/APOE/APOC1 gene locus showed significant association with longevity (P-value = 9.6 × 10(-8) ). By combined modeling of linkage and association, we showed that association of longevity with APOEε4 and APOEε2 alleles explain the linkage at 19q13.11-q13.32 with P-value = 0.02 and P-value = 1.0 × 10(-5) , respectively. In the largest linkage scan thus far performed for human familial longevity, we confirm that the APOE locus is a longevity gene and that additional longevity loci may be identified at 14q11.2, 17q12-q22, and 19p13.3-p13.11. As the latter linkage results are not explained by common variants, we suggest that rare variants play an important role in human familial longevity.


Assuntos
Apolipoproteína C-I/genética , Apolipoproteínas E/genética , Loci Gênicos , Longevidade/genética , Proteínas de Membrana Transportadoras/genética , Idoso , Idoso de 80 Anos ou mais , Alelos , Mapeamento Cromossômico , Cromossomos Humanos Par 14 , Cromossomos Humanos Par 17 , Cromossomos Humanos Par 19 , Análise por Conglomerados , Europa (Continente) , Ligação Genética , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , Escore Lod , Pessoa de Meia-Idade , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Irmãos
18.
Eur J Hum Genet ; 21(5): 574-7, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22929028

RESUMO

In addition to APOE and FOXO3, AKT1 has recently been suggested as a third consistent longevity gene, with variants in AKT1 found to be associated with human lifespan in two previous studies. Here, we evaluated AKT1 as a longevity-associated gene across populations by attempting to replicate the previously identified variant rs3803304 as well as by analyzing six additional AKT1 single-nucleotide polymorphisms, thus capturing more of the common variation in the gene. The study population was 2996 long-lived individuals (nonagenarians and centenarians) and 1840 younger controls of Danish and German ancestry. None of the seven SNPs tested were significantly associated with longevity in either a case-control or a longitudinal setting, although a supportive nominal indication of a disadvantageous effect of rs3803304 was found in a restricted group of Danish centenarian men. Overall, our results do not support AKT1 as a universal longevity-associated gene.


Assuntos
Longevidade/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Proto-Oncogênicas c-akt/genética , Idoso de 80 Anos ou mais , Dinamarca , Feminino , Genótipo , Alemanha , Humanos , Masculino , Modelos Genéticos
19.
Eur J Hum Genet ; 21(2): 240-2, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22588664

RESUMO

Our study demonstrates that the genetic investigation of forkhead box O3A gene (FOXO3A), a validated human longevity gene, is greatly hampered by the fact that its exonic regions have 99% sequence homology with the FOXO3B pseudogene. If unaccounted for, this high degree of homology can cause serious genotyping or sequencing errors. Here, we present an experimental set-up that allows reliable data generation for the highly homologous regions and that can be used for the evaluation of assay specificity. Using this design, we exemplarily showed FOXO3A-specific results for two single-nucleotide polymorphisms (SNPs) (rs4945816 and rs4946936) that are significantly associated with longevity in our centenarian-control sample (P(each)=0.0008). Because both SNPs are located in the 3' untranslated region of FOXO3A, they could be of functional relevance for the longevity phenotype. Our experimental set-up can be used for reliable and reproducible data generation for further sequencing and genotyping studies of FOXO3A with the aim of discovering new SNPs of functional relevance.


Assuntos
Fatores de Transcrição Forkhead/genética , Longevidade/genética , Pseudogenes/genética , Proteína Forkhead Box O3 , Genótipo , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único , Homologia de Sequência
20.
Aging Cell ; 11(4): 607-16, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22533606

RESUMO

Little is known about the functions of miRNAs in human longevity. Here, we present the first genome-wide miRNA study in long-lived individuals (LLI) who are considered a model for healthy aging. Using a microarray with 863 miRNAs, we compared the expression profiles obtained from blood samples of 15 centenarians and nonagenarians (mean age 96.4 years) with those of 55 younger individuals (mean age 45.9 years). Eighty miRNAs showed aging-associated expression changes, with 16 miRNAs being up-regulated and 64 down-regulated in the LLI relative to the younger probands. Seven of the eight selected aging-related biomarkers were technically validated using quantitative RT-PCR, confirming the microarray data. Three of the eight miRNAs were further investigated in independent samples of 15 LLI and 17 younger participants (mean age 101.5 and 36.9 years, respectively). Our screening confirmed previously published miRNAs of human aging, thus reflecting the utility of the applied approach. The hierarchical clustering analysis of the miRNA microarray expression data revealed a distinct separation between the LLI and the younger controls (P-value < 10(-5) ). The down-regulated miRNAs appeared as a cluster and were more often reported in the context of diseases than the up-regulated miRNAs. Moreover, many of the differentially regulated miRNAs are known to exhibit contrasting expression patterns in major age-related diseases. Further in silico analyses showed enrichment of potential targets of the down-regulated miRNAs in p53 and other cancer pathways. Altogether, synchronized miRNA-p53 activities could be involved in the prevention of tumorigenesis and the maintenance of genomic integrity during aging.


Assuntos
Longevidade/genética , MicroRNAs/sangue , MicroRNAs/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/sangue , Envelhecimento/genética , Doença/genética , Regulação para Baixo , Feminino , Marcadores Genéticos , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Reprodutibilidade dos Testes , Fatores de Risco , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA