Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37685861

RESUMO

This study focuses on the enzymatic hydrolysis of hemoglobin, the main component of cruor that gives blood its red color in mammals. The antibacterial and antioxidant potentials of human hemoglobin hydrolysates were evaluated in comparison to bovine hemoglobin. The results showed strong antimicrobial activity of the peptide hydrolysates against six bacterial strains, independent of the initial substrate concentration level. The hydrolysates also showed strong antioxidant activity, as measured by four different tests. In addition, the antimicrobial and antioxidant activities of the human and bovine hemoglobin hydrolysates showed little or no significant difference, with only the concentration level being the determining factor in their activity. The results of the mass spectrometry study showed the presence of a number of bioactive peptides, the majority of which have characteristics similar to those mentioned in the literature. New bioactive peptides were also identified in human hemoglobin, such as the antibacterial peptides PTTKTYFPHF (α37-46), FPTTKTYFPH (α36-45), TSKYR (α137-141), and STVLTSKYR (α133-141), as well as the antioxidant TSKYR (α137-141). According to these findings, human hemoglobin represents a promising source of bioactive peptides beneficial to the food or pharmaceutical industries.


Assuntos
Anti-Infecciosos , Antioxidantes , Animais , Humanos , Antioxidantes/farmacologia , Hidrólise , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Hemoglobinas/farmacologia , Peptídeos/farmacologia , Mamíferos
2.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37569300

RESUMO

Cruor, the main component responsible for the red color of mammalian blood, contains 90% haemoglobin, a protein considered to be a rich source of bioactive peptides. The aim of the present study is to assess the potential of human hemoglobin as a source of bioactive peptides, compared with bovine hemoglobin, which has been extensively studied in recent years. More specifically, the study focused on the α137-141 fragment of bovine haemoglobin (TSKYR), a small (653 Da) hydrophilic antimicrobial peptide. In this work, the potential of human hemoglobin to contain bioactive peptides was first investigated in silico in comparison with bovine hemoglobin-derived peptides using bioinformatics tools. The blast results showed a high identity, 88% and 85% respectively, indicating a high similarity between the α and ß chains. Peptide Cutter software was used to predict cleavage sites during peptide hydrolysis, revealing major conservation in the number and location of cleavage sites between the two species, while highlighting some differences. Some peptides were conserved, notably our target peptide (TSKYR), while others were specific to each species. Secondly, the two types of hemoglobin were subjected to similar enzymatic hydrolysis conditions (23 °C, pH 3.5), which showed that the hydrolysis of human hemoglobin followed the same reaction mechanism as the hydrolysis of bovine hemoglobin, the 'zipper' mechanism. Concerning the peptide of interest, α137-141, the RP-UPLC analyses showed that its identification was not affected by the increase in the initial substrate concentration. Its production was rapid, with more than 60% of the total α137-141 peptide production achieved in just 30 min of hydrolysis, reaching peak production at 3 h. Furthermore, increasing the substrate concentration from 1% to 10% (w/v) resulted in a proportional increase in α137-141 production, with a maximum concentration reaching 687.98 ± 75.77 mg·L-1, approximately ten-fold higher than that obtained with a 1% (w/v) concentration. Finally, the results of the UPLC-MS/MS analysis revealed the identification of 217 unique peptides in bovine hemoglobin hydrolysate and 189 unique peptides in human hemoglobin hydrolysate. Of these, 57 peptides were strictly common to both species. This revealed the presence of several bioactive peptides in both cattle and humans. Although some had been known previously, new bioactive peptides were discovered in human hemoglobin, such as four antibacterial peptides (α37-46 PTTKTYFPHF, α36-45 FPTTKTYFPH, α137-141 TSKYR, and α133-141 STVLTSKYR), three opioid peptides (α137-141 TSKYR,ß31-40 LVVYPWTQRF,ß32-40, VVYPWTQRF), an ACE inhibitor (ß129-135 KVVAGVA), an anticancer agent (ß33-39 VVYPWTQ), and an antioxidant (α137-141 TSKYR). To the best of our knowledge, these peptides have never been found in human hemoglobin before.

3.
Foods ; 12(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37444262

RESUMO

Bioinformatics software, allowing the identification of peptides by the comparison of peptide fragmentation spectra obtained by mass spectrometry versus targeted databases or directly by de novo sequencing, is now mandatory in peptidomics/proteomics approaches. Programming the identification software requires specifying, among other things, the mass measurement accuracy of the instrument and the digestion enzyme used with the number of missed cleavages allowed. Moreover, these software algorithms are able to identify a large number of post-translational modifications (PTMs). However, peptide and PTM identifications are challenging in the agrofood field due to non-specific cleavage sites of physiological- or food-grade enzymes and the number and location of PTMs. In this study, we show the importance of customized software programming to obtain a better peptide and PTM identification rate in the agrofood field. A gelatine product and one industrial gelatine hydrolysate from three different sources (beef, pork, and fish), each digested by simulated gastrointestinal digestion, MS-grade trypsin, or both, were used to perform the comparisons. Two main points are illustrated: (i) the impact of the set-up of specific enzyme versus no specific enzyme use and (ii) the impact of a maximum of six PTMs allowed per peptide versus the standard of three. Prior knowledge of the composition of the raw proteins is an important asset for better identification of peptide sequences.

4.
Food Res Int ; 169: 112887, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254335

RESUMO

Mass spectrometry has become the technique of choice for the assessment of a high variety of molecules in complex food matrices. It is best suited for monitoring the evolution of digestive processes in vivo and in vitro. However, considering the variety of equipment available in different laboratories and the diversity of sample preparation methods, instrumental settings for data acquisition, statistical evaluations, and interpretations of results, it is difficult to predict a priori the ideal parameters for optimal results. The present work addressed this uncertainty by executing an inter-laboratory study with samples collected during in vitro digestion and presenting an overview of the state-of-the-art mass spectrometry applications and analytical capabilities available for studying food digestion. Three representative high-protein foods - skim milk powder (SMP), cooked chicken breast and tofu - were digested according to the static INFOGEST protocol with sample collection at five different time points during gastric and intestinal digestion. Ten laboratories analysed all digesta with their in-house equipment and applying theirconventional workflow. The compiled results demonstrate in general, that soy proteins had a slower gastric digestion and the presence of longer peptide sequences in the intestinal phase compared to SMP or chicken proteins, suggesting a higher resistance to the digestion of soy proteins. Differences in results among the various laboratories were attributed more to the peptide selection criteria than to the individual analytical platforms. Overall, the combination of mass spectrometry techniques with suitable methodological and statistical approaches is adequate for contributing to the characterisation of the recently defined digestome.


Assuntos
Digestão , Proteínas de Soja , Animais , Proteínas de Soja/metabolismo , Leite/química , Peptídeos/análise , Espectrometria de Massas
5.
Food Res Int ; 169: 112814, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254390

RESUMO

OBJECTIVE: The aim of this study was to analyze the protein digestibility and postprandial metabolism in rats of milk protein matrices obtained by different industrial processes. MATERIAL AND METHODS: The study was conducted on Wistar rats that consumed a meal containing different 15N-labeled milk proteins. Four milk matrices were tested: native micellar caseins (C1), caseins low in calcium (C2 low Ca2+), a matrix containing a ratio 63:37 of caseins and whey proteins (CW2) and whey proteins alone (W). Blood and urine were collected during the postprandial period and rats were euthanized 6 h after meal intake to collect digestive contents and organs. RESULTS: Orocaecal digestibility values of amino acids ranged between 96.0 ± 0.2% and 96.6 ± 0.4% for C1-, C2 low Ca2+- and W-matrices, while this value was significantly lower for CW2 matrix (92.4 ± 0.5%). More dietary nitrogen was sequestered in the splanchnic area (intestinal mucosa and liver) as well as in plasma proteins after ingestion of W matrix, especially compared to the C1- and C2 low Ca2+-matrices. Peptidomic analysis showed that more milk protein-derived peptides were identified in the caecum of rats after the ingestion of the matrices containing caseins compared to W matrix. CONCLUSION: We found that demineralization of micellar caseins did not modify its digestibility and postprandial metabolism. The low digestibility of the modified casein-to-whey ratio matrix may be ascribed to a lower accessibility of the protein to digestive enzymes due to changes in the protein structure, while the higher nitrogen splanchnic retention after ingestion of whey was probably due to the fast assimilation of its protein content. Finally, our results showed that industrial processes that modify the structure and/or composition of milk proteins influence protein digestion and utilization.


Assuntos
Aminoácidos , Proteínas do Leite , Ratos , Animais , Proteínas do Leite/química , Aminoácidos/metabolismo , Caseínas/química , Proteínas do Soro do Leite , Período Pós-Prandial , Ratos Wistar , Nitrogênio/metabolismo , Peptídeos
6.
Phytochemistry ; 205: 113508, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36370882

RESUMO

The hop plant (Humulus lupulus L.) has been exploited for a long time for both its brewing and medicinal uses, due in particular to its specific chemical composition. These last years, hop cultivation that was in decline has been experiencing a renewal for several reasons, such as a craze for strongly hopped aromatic beers. In this context, the present work aims at investigating the genetic and chemical diversity of fifty wild hops collected from different locations in Northern France. These wild hops were compared to ten commercial varieties and three heirloom varieties cultivated in the same sampled geographical area. Genetic analysis relying on genome fingerprinting using 11 microsatellite markers showed a high level of diversity. A total of 56 alleles were determined with an average of 10.9 alleles per locus and assessed a significant population structure (mean pairwise FST = 0.29). Phytochemical characterization of hops was based on volatile compound analysis by HS-SPME GC-MS, quantification of the main prenylated phenolic compounds by UHPLC-UV as well as untargeted metabolomics by UHPLC-HRMS and revealed a high level of chemical diversity among the assessed wild accessions. In particular, analysis of volatile compounds revealed the presence of some minor but original compounds, such as aromadendrene, allo-aromadendrene, isoledene, ß-guaiene, α-ylangene and ß-pinene in some wild accessions; while analysis of phenolic compounds showed high content of ß-acids in these wild accessions, up to 2.37% of colupulone. Genetic diversity of wild hops previously observed was hence supported by their chemical diversity. Sample soil analysis was also performed to get a pedological classification of these different collection sites. Results of the multivariate statistical analysis suggest that wild hops constitute a huge pool of chemical and genetic diversity of this species.


Assuntos
Humulus , Humulus/genética , Análise Multivariada , Variação Genética
7.
Pharmaceutics ; 14(9)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36145669

RESUMO

Lacticaseicin 30 is one of the five bacteriocins produced by the Gram-positive Lacticaseibacillus paracasei CNCM I-5369. This 111 amino acid bacteriocin is noteworthy for being active against Gram-negative bacilli including Escherichia coli strains resistant to colistin. Prediction of the lacticaseicin 30 structure using the Alphafold2 pipeline revealed a largely helical structure including five helix segments, which was confirmed by circular dichroism. To identify the structural requirements of the lacticaseicin 30 activity directed against Gram-negative bacilli, a series of variants, either shortened or containing point mutations, was heterologously produced in Escherichia coli and assayed for their antibacterial activity against a panel of target strains including Gram-negative bacteria and the Gram-positive Listeria innocua. Lacticaseicin 30 variants comprising either the N-terminal region (amino acids 1 to 39) or the central and C-terminal regions (amino acids 40 to 111) were prepared. Furthermore, mutations were introduced by site-directed mutagenesis to obtain ten bacteriocin variants E6G, T7P, E32G, T33P, T52P, D57G, A74P, Y78S, Y93S and A97P. Compared to lacticaseicin 30, the anti-Gram-negative activity of the N-terminal peptide and variants E32G, T33P and D57G remained almost unchanged, while that of the C-terminal peptide and variants E6G, T7P, T52P, A74P, Y78S, Y93S and A97P was significantly altered. Finally, the N-terminal region was further shortened to keep only the first 20 amino acid part that was predicted to include the first helix. The anti-Gram-negative activity of this truncated peptide was completely abolished. Overall, this study shows that activity of lacticaseicin 30, one of the rare Gram-positive bacteriocins inhibiting Gram-negative bacteria, requires at least two helices in the N-terminal region and that the C-terminal region carries amino acids playing a role in modulation of the activity. Taken together, these data will help to design forthcoming variants of lacticaseicin 30 as promising therapeutic agents to treat infections caused by Gram-negative bacilli.

8.
Int J Mol Sci ; 23(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35955493

RESUMO

Dipeptidyl-peptidase IV (DPP-IV) plays an essential role in glucose metabolism by inactivating incretins. In this context, food-protein-derived DPP-IV inhibitors are promising glycemic regulators which may act by preventing the onset of type 2 diabetes in personalized nutrition. In this study, the DPP-IV-inhibitory potential of seven proteins from diverse origins was compared for the first time in vitro and in vivo in rat plasma after the intestinal barrier (IB) passage of the indigested proteins. The DPP-IV-inhibitory potentials of bovine hemoglobin, caseins, chicken ovalbumin, fish gelatin, and pea proteins were determined in rat plasma thirty minutes after oral administration. In parallel, these proteins, together with bovine whey and gluten proteins, were digested using the harmonized INFOGEST protocol adapted for proteins. The DPP-IV half-maximal inhibitory concentration (IC50) was determined in situ using Caco-2 cells. The DPP-IV-inhibitory activity was also measured after IB passage using a Caco2/HT29-MTX mixed-cell model. The peptide profiles were analyzed using reversed-phase high-performance liquid chromatography tandem mass spectrometry (RP-HPLC-MS/MS) with MS data bioinformatics management, and the IC50 of the identified peptides was predicted in silico. The in vitro and in vivo DPP-IV-inhibitory activity of the proteins differed according to their origin. Vegetable proteins and hemoglobin yielded the highest DPP-IV-inhibitory activity in vivo. However, no correlation was found between the in vivo and in vitro results. This may be partially explained by the differences between the peptidome analysis and the in silico predictions, as well as the study complexity.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Animais , Células CACO-2 , Digestão , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/química , Inibidores da Dipeptidil Peptidase IV/farmacologia , Humanos , Peptídeos/química , Ratos , Espectrometria de Massas em Tandem
9.
Front Microbiol ; 13: 914713, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35794911

RESUMO

This study investigated the antiradical and antioxidant potential of the three families of lipopeptides (i.e., surfactin, mycosubtilin, and plipastatin/fengycin) produced by Bacillus subtilis strains. The antiradical/antioxidant activities of highly purified lipopeptides were studied in acellular models using a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, superoxide anion ( O 2 . - ), hydrogen peroxide, (H2O2) and hydroxyl radical (HO.). At a lipopeptide concentration of 500 mg.L-1, the maximum inhibition of DPPH reached 22.88% (obtained for plipastatin). Moreover, the scavenging effects of O 2 . - , H2O2, and HO. at the highest concentration tested (250 mg.L-1) were found to be 6, 21, and 3% for surfactin, 19, 9, and 15% for mycosubtilin, 21, 18, and 59% for plipastatin, 21, 31, and 61% for the mixture of surfactin/plipastatin, and 13, 16, and 15% for the mixture of surfactin/mycosubtilin, respectively. These results showed that plipastatin was the best candidate due to its antioxidant activities.

10.
Food Res Int ; 157: 111360, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761622

RESUMO

Milk and dairy products are significant sources of proteins and peptides impacting human health. In this way, the interest in CPPs, bioactive phosphorylated peptides resulting from the hydrolysis of caseins, has grown in the past years. CPPs were mainly studied for their capacity to chelate and increase the bioavailability of essential minerals involved in multiple physiological processes. Moreover, CPPs harbour interesting antioxidant and anti-inflammatory properties. Recent in vivo and in vitro studies demonstrated that these different roles are strongly linked to the intrinsic properties of CPPs and CPP concentrate preparations. This review first comments on the different methods of CPP analytical characterization, focusing on recent techniques. Then, the CPP release occurring during the gastrointestinal digestion was reviewed, followed by the different CPP obtention processes and their impact on their physicochemical characteristics. Finally, the different bioactive roles attributed to CPPs, including mineral chelating properties, are discussed. We show that CPPs have a promising role in treating various pathologies, notably to compensate for deficiencies in certain nutrients and an anti-oxidant and anti-inflammatory role. Nevertheless, the mechanisms by which CPPs exert their role remain to be elucidated, and this requires precise characterization of CPPs. This work highlights the key parameters to be considered to study and produce CPPs and the different ways to be investigated in the future to elucidate their roles in vivo and characterize their potential for human health.


Assuntos
Caseínas , Fosfopeptídeos , Animais , Disponibilidade Biológica , Caseínas/química , Humanos , Leite/química , Minerais/análise , Fosfopeptídeos/química
11.
Foods ; 10(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34574245

RESUMO

The identification of phosphopeptides is currently a challenge when they are part of a complex matrix of peptides, such as a milk protein enzymatic hydrolysate. This challenge increases with both the number of phosphorylation sites on the phosphopeptides and their amino acid length. Here, this paper reports a four-phase strategy from an enzymatic casein hydrolysate before a mass spectrometry analysis in order to enhance the identification of phosphopeptides and phosphosites: (i) the control protein hydrolysate, (ii) a two-step enzymatic dephosphorylation of the latter, allowing for the almost total dephosphorylation of peptides, (iii) a one-step enzymatic dephosphorylation, allowing for the partial dephosphorylation of the peptides and (iv) an additional endoGluC enzymatic hydrolysis, allowing for the cleavage of long-size peptides into shorter ones. The reverse-phase high-pressure liquid chromatography-tandem mass spectrometry (RP-HPLC-MS/MS) analyses of hydrolysates that underwent this four-phase strategy allowed for the identification of 28 phosphorylation sites (90%) out of the 31 referenced in UniprotKB/Swiss-Prot (1 June 2021), compared to 17 sites (54%) without the latter. The alpha-S2 casein phosphosites, referenced by their similarity in the UniProt database, were experimentally identified, whereas pSer148, pThr166 and pSer187 from a multiphosphorylated long-size kappa-casein were not. Data are available via ProteomeXchange with identifier PXD027132.

12.
Front Plant Sci ; 12: 703712, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552606

RESUMO

This study aimed to examine the ability of ulvan, a water-soluble polysaccharide from the green seaweed Ulva fasciata, to provide protection and induce resistance in wheat against the hemibiotrophic fungus Zymoseptoria tritici. Matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS) analysis indicated that ulvan is mainly composed of unsaturated monosaccharides (rhamnose, rhamnose-3-sulfate, and xylose) and numerous uronic acid residues. In the greenhouse, foliar application of ulvan at 10 mg.ml-1 2 days before fungal inoculation reduced disease severity and pycnidium density by 45 and 50%, respectively. Ulvan did not exhibit any direct antifungal activity toward Z. tritici, neither in vitro nor in planta. However, ulvan treatment significantly reduced substomatal colonization and pycnidium formation within the mesophyll of treated leaves. Molecular assays revealed that ulvan spraying elicits, but does not prime, the expression of genes involved in several wheat defense pathways, including pathogenesis-related proteins (ß-1,3-endoglucanase and chitinase), reactive oxygen species metabolism (oxalate oxidase), and the octadecanoid pathway (lipoxygenase and allene oxide synthase), while no upregulation was recorded for gene markers of the phenylpropanoid pathway (phenylalanine ammonia-lyase and chalcone synthase). Interestingly, the quantification of 83 metabolites from major chemical families using ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) in both non-infectious and infectious conditions showed no substantial changes in wheat metabolome upon ulvan treatment, suggesting a low metabolic cost associated with ulvan-induced resistance. Our findings provide evidence that ulvan confers protection and triggers defense mechanisms in wheat against Z. tritici without major modification of the plant physiology.

13.
Foods ; 10(6)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200404

RESUMO

Protein hydrolysates are, in general, mixtures of amino acids and small peptides able to supply the body with the constituent elements of proteins in a directly assimilable form. They are therefore characterised as products with high nutritional value. However, hydrolysed proteins display an unpleasant bitter taste and possible off-flavours which limit the field of their nutrition applications. The successful identification and characterisation of bitter protein hydrolysates and, more precisely, the peptides responsible for this unpleasant taste are essential for nutritional research. Due to the large number of peptides generated during hydrolysis, there is an urgent need to develop methods in order to rapidly characterise the bitterness of protein hydrolysates. In this article, two enzymatic hydrolysis kinetics of micellar milk caseins were performed for 9 h. For both kinetics, the optimal time to obtain a hydrolysate with appreciable organoleptic qualities is 5 h. Then, the influence of the presence or absence of peptides and their intensity over time compared to the different sensory characteristics of hydrolysates was studied using heat maps, random forests and regression trees. A total of 22 peptides formed during the enzymatic proteolysis of micellar caseins and influencing the bitterness the most were identified. These methods represent simple and efficient tools to identify the peptides susceptibly responsible for bitterness intensity and predict the main sensory feature of micellar casein enzymatic hydrolysates.

14.
Front Microbiol ; 11: 586536, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33162963

RESUMO

Vibrio bacteria, and particularly members of the Harveyi clade, are the causative agents of vibriosis. This disease is responsible for mass mortality events and important economic losses on aquaculture farms. Improvements in surveillance and diagnosis are needed to successfully manage vibriosis outbreaks. 16S rRNA gene sequencing is generally considered to be the gold standard for bacterial identification but the cost and long processing time make it difficult to apply for routine identification. In contrast, MALDI-TOF MS offers rapid diagnosis and is commonly used in veterinary laboratories today. The major limiting factor for using this technique is the low environmental bacterial diversity in the commonly available databases. Here, we demonstrate that the sole use of the commercially available Bruker BioTyper database is not fully adequate for identifying Vibrio bacteria isolated from aquaculture farms. We therefore developed a new in-house database named Luvibase, composed of 23 reference MALDI-TOF mass spectra profiles obtained from Vibrio collection strains, mostly belonging to the Harveyi clade. The comparison of the accuracy of MALDI-TOF MS profiling and 16S rRNA gene sequencing revealed a lack of resolution for 16S rRNA gene sequencing. In contrast, MALDI-TOF MS profiling proved to be a more reliable tool for resolving species-level variations within the Harveyi clade. Finally, combining the Luvibase with the Bruker ver.9.0.0.0 database, led to successful identification of 47 Vibrio isolates obtained from moribund abalone, seabass and oysters. Thus, the use of Luvibase allow for increased confidence in identifying Vibrio species belonging to the Harveyi clade.

15.
Foods ; 9(11)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143332

RESUMO

The goal of this study was to determine the impact of industrial processes on the digestion of six milk protein matrices using the harmonized INFOGEST in vitro static digestion protocol. First, this method was optimized to simple protein matrices using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and size exclusion chromatography (SEC) to compare the intestinal protein hydrolysis obtained with increasing quantities of pancreatin. Similar results were achieved with the originally required pancreatin amount (trypsin activity of 100 U.mL-1) and with a quantity of pancreatin equivalent to a trypsin activity of 27.3 U.mL-1, which was thus used to perform the in vitro digestion of the milk matrices. Molecular weight profiles, peptide heterogeneity from LC-MS/MS data, calcium, free amino acid, and peptide concentrations were determined in the gastric and intestinal phases to compare the milk protein digests. Results showed that the industrial process affected not only the protein distribution of the matrices but also most likely the protein structures. Indeed, differences arose in terms of peptide populations generated when the caseins were reticulated or when their calcium concentrations were reduced.

16.
Front Bioeng Biotechnol ; 8: 585815, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102467

RESUMO

Production of bioactive peptides (BAPs) by Lactobacillus species is a cost-effective approach compared to the use of purified enzymes. In this study, proteolytic Lactobacillus helveticus strains were used for milk fermentation to produce BAPs capable of inhibiting angiotensin converting enzyme (ACE). Fermented milks were produced in bioreactors using batch mode, and the resulting products showed significant ACE-inhibitory activities. However, the benefits of fermentation in terms of peptide composition and ACE-inhibitory activity were noticeably reduced when the samples (fermented milks and non-fermented controls) were subject to simulated gastrointestinal digestion (GID). Introducing an ultrafiltration step after fermentation allowed to prevent this effect of GID and restored the effect of fermentation. Furthermore, an integrated continuous process for peptide production was developed which led to a 3 fold increased peptide productivity compared to batch production. Using a membrane bioreactor allowed to generate and purify in a single step, an active ingredient for ACE inhibition.

17.
Membranes (Basel) ; 10(10)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003442

RESUMO

Bovine cruor, a slaughterhouse waste, was mainly composed of hemoglobin, a protein rich in antibacterial and antioxidant peptides after its hydrolysis. In the current context of food safety, such bioactive peptides derived from enzymatic hydrolysis of hemoglobin represent potential promising preservatives for the food sector. In this work, the hemoglobin hydrolysis to produce bioactive peptides was performed in a regulated pH medium without the use of chemical solvents and by an eco-efficient process: electrodialysis with bipolar membrane (EDBM). Bipolar/monopolar (anionic or cationic) configuration using the H+ and OH- generated by the bipolar membranes to regulate the pH was investigated. The aim of this study was to present and identify the bioactive peptides produced by EDBM in comparison with conventional hydrolysis and to identify their biological activity. The use of the EDBM for the enzymatic hydrolysis of hemoglobin has allowed for the production and identification of 17 bioactive peptides. Hydrolysates obtained by EDBM showed an excellent antimicrobial activity against six strains, antioxidant activity measured by four different tests and for the first time anti-fungal activities against five yeasts and mold strains. Consequently, this enzymatic hydrolysis carried out in regulated pH medium with bipolar membranes could provide bioactive peptides presenting antibacterial, antifungal and antioxidant interest.

18.
Membranes (Basel) ; 10(10)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992811

RESUMO

Neokyotorphin (α137-141) is recognized as an antimicrobial peptide and a natural meat preservative. It is produced by conventional enzymatic hydrolysis of bovine hemoglobin, a major component of cruor, a by-product of slaughterhouses. However, during conventional hydrolysis, chemical agents are necessary to adjust and regulate the pH of the protein solution and the mineral salt content of the final hydrolysate is consequently high. To produce this peptide of interest without chemical agents and with a low salt concentration, electrodialysis with bipolar membrane (EDBM), an electromembrane process recognized as a green process, with two different membrane configurations (cationic (MCP) and anionic (AEM) membranes) was investigated. Hydrolysis in EDBM showed the same enzymatic mechanism, "Zipper", and allowed the generation of α137-141 in the same concentration as observed in conventional hydrolysis (control). EDBM-MCP allowed the production of hydrolysates containing a low concentration of mineral salts but with fouling formation on MCP, while EDBM-AEM allowed the production of hydrolysates without fouling but with a similar salt concentration than the control. To the best of our knowledge, this was the first time that EDBM was demonstrated as a feasible and innovative technology to produce peptide hydrolysates from enzymatic hydrolysis.

19.
Foods ; 9(10)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987808

RESUMO

Enzymatic hydrolysis of food proteins generally changes the techno-functional, nutritional, and organoleptic properties of hydrolyzed proteins. As a result, protein hydrolysates have an important interest in the food industries. However, they tend to be characterized by a bitter taste and some off-flavors, which limit their use in the food industry. These tastes and aromas come from peptides, amino acids, and volatile compounds generated during hydrolysis. In this article, sixteen more or less bitter enzymatic hydrolysates produced from a milk protein liquid fraction enriched in micellar caseins using commercially available, food-grade proteases were subjected to a sensory analysis using a trained and validated sensory panel combined to a peptidomics approach based on the peptide characterization by reverse-phase high-performance liquid chromatography, high-resolution mass spectrometry, and bioinformatics software. The comparison between the sensory characteristics and the principal components of the principal component analysis (PCA) of mass spectrometry data reveals that peptidomics constitutes a convenient, valuable, fast, and economic intermediate method to evaluating the bitterness of enzymatic hydrolysates, as a trained sensory panel can do it.

20.
Food Res Int ; 133: 109201, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32466902

RESUMO

The aim of this study was to investigate the probiotic properties of 174 Lactobacillus strains isolated from Mongolian dairy products, and particularly their impact on intestinal calcium uptake and absorption. All isolates underwent a first screening based on cell surface hydrophobicity, acid tolerance, tolerance to gastro-intestinal digestion, autoaggregation, adhesion and cytotoxicity against intestinal cells. Six Lactobacillus strains from different species (L. casei, L. kefiranofaciens, L. plantarum, L. fermentum, L. helveticus and L. delbrueckii) were selected, and their impact on intestinal calcium uptake and transport was investigated using Caco-2. Five strains were able to improve total calcium transport after 24 h contact with a differentiated Caco-2 cell monolayer. Concomitantly the L. plantarum strain was able to increase cellular calcium uptake in Caco-2 cells by 10% in comparison to control conditions. To determine which pathway(s) of calcium absorption was modulated by the strains, a qPCR-based study on 4 genes related to calcium/vitamin D metabolism or tight junction integrity was conducted on mucus-secreting intestinal HT-29 MTX cells. The L. plantarum strain modulates the transcellular pathway by regulating the expression of vitamin D receptor (1.79 fold of control) and calcium transporter (4.77 fold of control) while the L. delbrueckii strain acts on the paracellular pathway by modulating claudin-2 expression (2.83 fold of control). This work highlights the impact of Lactobacillus probiotic strains on intestinal calcium absorption and for the first time give some evidence about the cellular pathways involved.


Assuntos
Lactobacillus , Probióticos , Células CACO-2 , Cálcio , Humanos , Mongólia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...