Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol ; 147(1): 70, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598053

RESUMO

The risk of developing Alzheimer's disease (AD) significantly increases in individuals carrying the APOEε4 allele. Elderly cognitively healthy individuals with APOEε4 also exist, suggesting the presence of cellular mechanisms that counteract the pathological effects of APOEε4; however, these mechanisms are unknown. We hypothesized that APOEε4 carriers without dementia might carry genetic variations that could protect them from developing APOEε4-mediated AD pathology. To test this, we leveraged whole-genome sequencing (WGS) data in the National Institute on Aging Alzheimer's Disease Family Based Study (NIA-AD FBS), Washington Heights/Inwood Columbia Aging Project (WHICAP), and Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA) cohorts and identified potentially protective variants segregating exclusively among unaffected APOEε4 carriers. In homozygous unaffected carriers above 70 years old, we identified 510 rare coding variants. Pathway analysis of the genes harboring these variants showed significant enrichment in extracellular matrix (ECM)-related processes, suggesting protective effects of functional modifications in ECM proteins. We prioritized two genes that were highly represented in the ECM-related gene ontology terms, (FN1) and collagen type VI alpha 2 chain (COL6A2) and are known to be expressed at the blood-brain barrier (BBB), for postmortem validation and in vivo functional studies. An independent analysis in a large cohort of 7185 APOEε4 homozygous carriers found that rs140926439 variant in FN1 was protective of AD (OR = 0.29; 95% CI [0.11, 0.78], P = 0.014) and delayed age at onset of disease by 3.37 years (95% CI [0.42, 6.32], P = 0.025). The FN1 and COL6A2 protein levels were increased at the BBB in APOEε4 carriers with AD. Brain expression of cognitively unaffected homozygous APOEε4 carriers had significantly lower FN1 deposition and less reactive gliosis compared to homozygous APOEε4 carriers with AD, suggesting that FN1 might be a downstream driver of APOEε4-mediated AD-related pathology and cognitive decline. To validate our findings, we used zebrafish models with loss-of-function (LOF) mutations in fn1b-the ortholog for human FN1. We found that fibronectin LOF reduced gliosis, enhanced gliovascular remodeling, and potentiated the microglial response, suggesting that pathological accumulation of FN1 could impair toxic protein clearance, which is ameliorated with FN1 LOF. Our study suggests that vascular deposition of FN1 is related to the pathogenicity of APOEε4, and LOF variants in FN1 may reduce APOEε4-related AD risk, providing novel clues to potential therapeutic interventions targeting the ECM to mitigate AD risk.


Assuntos
Doença de Alzheimer , Fibronectinas , Idoso , Animais , Humanos , Doença de Alzheimer/genética , Fibronectinas/genética , Variação Genética/genética , Gliose , Peixe-Zebra
2.
Res Sq ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38343836

RESUMO

Murine studies have highlighted a crucial role for immune cells in the meninges in surveilling the central nervous system (CNS) and influencing neuroinflammation. However, how meningeal immunity is altered in human neurodegeneration and its effects on CNS inflammation is understudied. We performed the first single-cell analysis of the transcriptomes and T cell receptor (TCR) repertoire of 104,635 immune cells from 55 postmortem human brain and leptomeningeal tissues from donors with neurodegenerative diseases including amyotrophic lateral sclerosis, Alzheimer's disease, and Parkinson's disease. RNA and TCR sequencing from paired leptomeninges and brain allowed us to perform lineage tracing to identify the spatial trajectory of clonal T cells in the CNS and its borders. We propose that T cells activated in the brain emigrate to and establish residency in the leptomeninges where they likely contribute to impairments in lymphatic drainage and remotely to CNS inflammation by producing IFNγ and other cytokines. We identified regulatory networks local to the meninges including NK cell-mediated CD8 T cell killing which likely help to control meningeal inflammation. Collectively, these findings provide not only a foundation for future studies into brain border immune surveillance but also highlight important intercellular dynamics that could be leveraged to modulate neuroinflammation.

3.
bioRxiv ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38260431

RESUMO

The risk of developing Alzheimer's disease (AD) significantly increases in individuals carrying the APOEε4 allele. Elderly cognitively healthy individuals with APOEε4 also exist, suggesting the presence of cellular mechanisms that counteract the pathological effects of APOEε4 ; however, these mechanisms are unknown. We hypothesized that APOEε4 carriers without dementia might carry genetic variations that could protect them from developing APOEε4- mediated AD pathology. To test this, we leveraged whole genome sequencing (WGS) data in National Institute on Aging Alzheimer's Disease Family Based Study (NIA-AD FBS), Washington Heights/Inwood Columbia Aging Project (WHICAP), and Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA) cohorts and identified potentially protective variants segregating exclusively among unaffected APOEε4 carriers. In homozygous unaffected carriers above 70 years old, we identified 510 rare coding variants. Pathway analysis of the genes harboring these variants showed significant enrichment in extracellular matrix (ECM)-related processes, suggesting protective effects of functional modifications in ECM proteins. We prioritized two genes that were highly represented in the ECM-related gene ontology terms, (FN1) and collagen type VI alpha 2 chain ( COL6A2 ) and are known to be expressed at the blood-brain barrier (BBB), for postmortem validation and in vivo functional studies. The FN1 and COL6A2 protein levels were increased at the BBB in APOEε4 carriers with AD. Brain expression of cognitively unaffected homozygous APOEε4 carriers had significantly lower FN1 deposition and less reactive gliosis compared to homozygous APOEε4 carriers with AD, suggesting that FN1 might be a downstream driver of APOEε4 -mediated AD-related pathology and cognitive decline. To validate our findings, we used zebrafish models with loss-of-function (LOF) mutations in fn1b - the ortholog for human FN1 . We found that fibronectin LOF reduced gliosis, enhanced gliovascular remodeling and potentiated the microglial response, suggesting that pathological accumulation of FN1 could impair toxic protein clearance, which is ameliorated with FN1 LOF. Our study suggests vascular deposition of FN1 is related to the pathogenicity of APOEε4 , LOF variants in FN1 may reduce APOEε4 -related AD risk, providing novel clues to potential therapeutic interventions targeting the ECM to mitigate AD risk.

4.
bioRxiv ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38260408

RESUMO

Alzheimer's disease (AD) remains a complex challenge characterized by cognitive decline and memory loss. Genetic variations have emerged as crucial players in the etiology of AD, enabling hope for a better understanding of the disease mechanisms; yet the specific mechanism of action for those genetic variants remain uncertain. Animal models with reminiscent disease pathology could uncover previously uncharacterized roles of these genes. Using CRISPR/Cas9 gene editing, we generated a knockout model for abca7, orthologous to human ABCA7 - an established AD-risk gene. The abca7 +/- zebrafish showed reduced astroglial proliferation, synaptic density, and microglial abundance in response to amyloid beta 42 (Aß42). Single-cell transcriptomics revealed abca7 -dependent neuronal and glial cellular crosstalk through neuropeptide Y (NPY) signaling. The abca7 knockout reduced the expression of npy, bdnf and ngfra , which are required for synaptic integrity and astroglial proliferation. With clinical data in humans, we showed reduced NPY in AD correlates with elevated Braak stage, predicted regulatory interaction between NPY and BDNF , identified genetic variants in NPY associated with AD, found segregation of variants in ABCA7, BDNF and NGFR in AD families, and discovered epigenetic changes in the promoter regions of NPY, NGFR and BDNF in humans with specific single nucleotide polymorphisms in ABCA7 . These results suggest that ABCA7-dependent NPY signaling is required for synaptic integrity, the impairment of which generates a risk factor for AD through compromised brain resilience.

5.
bioRxiv ; 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37503131

RESUMO

Recent murine studies have highlighted a crucial role for the meninges in surveilling the central nervous system (CNS) and influencing CNS inflammation. However, how meningeal immunity is altered in human neurodegeneration and its potential effects on neuroinflammation is understudied. In the present study, we performed single-cell analysis of the transcriptomes and T cell receptor repertoire of 72,576 immune cells from 36 postmortem human brain and leptomeninges tissues from donors with neurodegenerative diseases including amyotrophic lateral sclerosis, Alzheimer's disease, and Parkinson's disease. We identified the meninges as an important site of antigen presentation and CD8 T cell activation and clonal expansion and found that T cell activation in the meninges is a requirement for infiltration into the CNS. We further found that natural killer cells have the potential to negatively regulate T cell activation locally in the meninges through direct killing and are one of many regulatory mechanisms that work to control excessive neuroinflammation.

6.
NPJ Regen Med ; 8(1): 33, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429840

RESUMO

Neurogenesis, crucial for brain resilience, is reduced in Alzheimer's disease (AD) that induces astroglial reactivity at the expense of the pro-neurogenic potential, and restoring neurogenesis could counteract neurodegenerative pathology. However, the molecular mechanisms promoting pro-neurogenic astroglial fate despite AD pathology are unknown. In this study, we used APP/PS1dE9 mouse model and induced Nerve growth factor receptor (Ngfr) expression in the hippocampus. Ngfr, which promotes neurogenic fate of astroglia during the amyloid pathology-induced neuroregeneration in zebrafish brain, stimulated proliferative and neurogenic outcomes. Histological analyses of the changes in proliferation and neurogenesis, single-cell transcriptomics, spatial proteomics, and functional knockdown studies showed that the induced expression of Ngfr reduced the reactive astrocyte marker Lipocalin-2 (Lcn2), which we found was sufficient to reduce neurogenesis in astroglia. Anti-neurogenic effects of Lcn2 was mediated by Slc22a17, blockage of which recapitulated the pro-neurogenicity by Ngfr. Long-term Ngfr expression reduced amyloid plaques and Tau phosphorylation. Postmortem human AD hippocampi and 3D human astroglial cultures showed elevated LCN2 levels correlate with reactive gliosis and reduced neurogenesis. Comparing transcriptional changes in mouse, zebrafish, and human AD brains for cell intrinsic differential gene expression and weighted gene co-expression networks revealed common altered downstream effectors of NGFR signaling, such as PFKP, which can enhance proliferation and neurogenesis in vitro when blocked. Our study suggests that the reactive non-neurogenic astroglia in AD can be coaxed to a pro-neurogenic fate and AD pathology can be alleviated with Ngfr. We suggest that enhancing pro-neurogenic astroglial fate may have therapeutic ramifications in AD.

7.
Acta Neuropathol Commun ; 11(1): 105, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386610

RESUMO

Despite the increasing demographic diversity of the United States' aging population, there remain significant gaps in post-mortem research investigating the ethnoracial heterogeneity in the neuropathological landscape of Alzheimer Disease (AD). Most autopsy-based studies have focused on cohorts of non-Hispanic White decedents (NHWD), with few studies including Hispanic decedents (HD). We aimed to characterize the neuropathologic landscape of AD in NHWD (n = 185) and HD (n = 92) evaluated in research programs across three institutions: University of California San Diego, University of California Davis, and Columbia University. Only persons with a neuropathologic diagnosis of intermediate/high AD determined by NIA Reagan and/or NIA-AA criteria were included. A frequency-balanced random sample without replacement was drawn from the NHWD group using a 2:1 age and sex matching scheme with HD. Four brain areas were evaluated: posterior hippocampus, frontal, temporal, and parietal cortices. Sections were stained with antibodies against Aß (4G8) and phosphorylated tau (AT8). We compared the distribution and semi-quantitative densities for neurofibrillary tangles (NFTs), neuropil threads, core, diffuse, and neuritic plaques. All evaluations were conducted by an expert blinded to demographics and group status. Wilcoxon's two-sample test revealed higher levels of neuritic plaques in the frontal cortex (p = 0.02) and neuropil threads (p = 0.02) in HD, and higher levels of cored plaques in the temporal cortex in NHWD (p = 0.02). Results from ordinal logistic regression controlling for age, sex, and site of origin were similar. In other evaluated brain regions, semi-quantitative scores of plaques, tangles, and threads did not differ statistically between groups. Our results demonstrate HD may be disproportionately burdened by AD-related pathologies in select anatomic regions, particularly tau deposits. Further research is warranted to understand the contributions of demographic, genetic, and environmental factors to heterogeneous pathological presentations.


Assuntos
Doença de Alzheimer , Humanos , Idoso , Placa Amiloide , Brancos , Neuropatologia , Emaranhados Neurofibrilares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...