Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Genet ; 105(6): 589-595, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38506155

RESUMO

The BAP1 tumor suppressor gene encodes a deubiquitinase enzyme involved in several cellular activities, including DNA repair and apoptosis. Germline pathogenic variants in BAP1 have been associated with heritable conditions including BAP1 tumor predisposition syndrome 1 (BAP1-TPDS1) and a neurodevelopmental disorder known as Kury-Isidor syndrome (KURIS). Both these conditions are caused by monoallelic, dominant alterations of BAP1 but have never been reported in the same subject or family, suggesting a mutually exclusive genotype-phenotype correlation. This distinction is extremely important considering the early onset and aggressive nature of the types of cancer reported in individuals with TPDS1. Genetic counseling in subjects with germline BAP1 variants is fundamental to predicting the effect of the variant and the expected phenotype, assessing the potential risk of developing cancer for the tested subject and the family members who may carry the same variant and providing the multidisciplinary clinical team with the proper information to establish precise surveillance and management protocols.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Proteínas Supressoras de Tumor , Ubiquitina Tiolesterase , Humanos , Mutação em Linhagem Germinativa/genética , Ubiquitina Tiolesterase/genética , Proteínas Supressoras de Tumor/genética , Fenótipo , Aconselhamento Genético , Síndromes Neoplásicas Hereditárias/genética , Transtornos do Neurodesenvolvimento/genética , Proteína BRCA1/genética , Feminino
2.
J Thorac Dis ; 16(1): 671-687, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38410609

RESUMO

Background and Objective: Malignant pleural mesothelioma (MPM) is a very aggressive primary tumor of the pleura whose main risk factor is exposure to asbestos. However, only a minority of exposed people develops MPM and the incidence of MPM cases without an apparent association with asbestos exposure has been increasing in recent years, suggesting that genetic predisposing factors may play a crucial role. In addition, several studies reported familial cases of MPM, suggesting that heredity may be an important and underestimated feature in MPM development. Several candidate genes have been associated with a predisposition to MPM and most of them play a role in DNA repair mechanisms: overall, approximately 20% of MPM cases may be related to genetic predisposition. A particular category of patients with high susceptibility to MPM is represented by carriers of pathogenic variants in the BAP1 gene. Germline variants in BAP1 predispose to the development of MPM following an autosomal dominant pattern of inheritance in the familial cases. MPMs in these patients are significantly less aggressive, and patients require a multidisciplinary approach that involves genetic counseling, medical genetics, pathology, surgical, medical, and radiation oncology expertise. In the present narrative review, we presented a comprehensive overview of genetic susceptibility in the development of MPM. Methods: The narrative review is based on a selective literature carried out in PubMed in 2023. Inclusion criteria were original articles in English language, and clinical trials (randomized, prospective, or retrospective). Key Content and Findings: We summarized the somatic and germline variants and the differences in terms of clinicopathological features and prognosis between gene-related MPM (GR-MPM) and asbestos-related MPM (AR-MPM). We also discussed the indications for screening, genetic testing, and surveillance of patients with BAP1 germline variants. Conclusions: In this narrative review, we have emphasized that the BAP1 gene's harmful germline variations are inherited in an autosomal dominant manner in familial cases. MPMs in individuals with these variations are less severe, and their medical care necessitates a collaborative effort. Additionally, we have outlined the current therapeutic prospects for MPM, including the possibility of gene-specific therapy, which is currently promising but still requires clinical validation.

5.
J Clin Med ; 12(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38002620

RESUMO

Pleural mesothelioma (PM) is a type of cancer that is highly related to exposure to asbestos fibers. It shows aggressive behavior, and the current therapeutic approaches are usually insufficient to change the poor prognosis. Moreover, apart from staging and histological classification, there are no validated predictors of its response to treatment or its long-term outcomes. Numerous studies have investigated minimally invasive biomarkers in pleural fluid or blood to aid in earlier diagnosis and prognostic assessment of PM. The most studied marker in pleural effusion is mesothelin, which exhibits good specificity but low sensitivity, especially for non-epithelioid PM. Other biomarkers found in pleural fluid include fibulin-3, hyaluronan, microRNAs, and CYFRA-21.1, which have lower diagnostic capabilities but provide prognostic information and have potential roles as therapeutic targets. Serum is the most investigated matrix for biomarkers of PM. Several serum biomarkers in PM have been studied, with mesothelin, osteopontin, and fibulin-3 being the most often tested. A soluble mesothelin-related peptide (SMRP) is the only FDA-approved biomarker in patients with suspected mesothelioma. With different serum and pleural fluid cut-offs, it provides useful information on the diagnosis, prognosis, follow-up, and response to therapy in epithelioid PM. Panels combining different markers and proteomics technologies show promise in terms of improving clinical performance in the diagnosis and monitoring of mesothelioma patients. However, there is still no evidence that early detection can improve the treatment outcomes of PM patients.

6.
Cells ; 12(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37759516

RESUMO

Glucocorticoids (GCs) are commonly used to treat autoimmune and inflammatory diseases, but their clinical effects and long-term use can lead to serious side effects. New drugs that can replace GCs are needed. Glucocorticoid-induced leucine zipper (GILZ) is induced by GCs and mediates many of their anti-inflammatory effects, such as inhibiting the pro-inflammatory molecule NF-κB. The GILZ C-terminal domain (PER region) is responsible for GILZ/p65NF-κB interaction and consequent inhibition of its transcriptional activity. A set of five short peptides spanning different parts of the PER region of GILZ protein was designed, and their anti-inflammatory activity was tested, both in vitro and in vivo. We tested the biological activity of GILZ peptides in human lymphocytic and monocytic cell lines to evaluate their inhibitory effect on the NF-κB-dependent expression of pro-inflammatory cytokines. Among the tested peptides, the peptide named PEP-1 demonstrated the highest efficacy in inhibiting cell activation in vitro. Subsequently, PEP-1 was further evaluated in two in vivo experimental colitis models (chemically induced by DNBS administration and spontaneous colitis induced in IL-10 knock-out (KO) mice (to assess its effectiveness in counteracting inflammation. Results show that PEP-1 reduced disease severity in both colitis models associated with reduced NF-κB pro-inflammatory activity in colon lamina propria lymphocytes. This study explored GILZ-based 'small peptides' potential efficacy in decreasing lymphocyte activation and inflammation associated with experimental inflammatory bowel diseases (IBDs). Small peptides have several advantages over the entire protein, including higher selectivity, better stability, and bioavailability profile, and are easy to synthesize and cost-effective. Thus, identifying active GILZ peptides could represent a new class of drugs for treating IBD patients.

7.
BMC Cancer ; 23(1): 540, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37312079

RESUMO

BACKGROUND: The current management of lung cancer patients has reached a high level of complexity. Indeed, besides the traditional clinical variables (e.g., age, sex, TNM stage), new omics data have recently been introduced in clinical practice, thereby making more complex the decision-making process. With the advent of Artificial intelligence (AI) techniques, various omics datasets may be used to create more accurate predictive models paving the way for a better care in lung cancer patients. METHODS: The LANTERN study is a multi-center observational clinical trial involving a multidisciplinary consortium of five institutions from different European countries. The aim of this trial is to develop accurate several predictive models for lung cancer patients, through the creation of Digital Human Avatars (DHA), defined as digital representations of patients using various omics-based variables and integrating well-established clinical factors with genomic data, quantitative imaging data etc. A total of 600 lung cancer patients will be prospectively enrolled by the recruiting centers and multi-omics data will be collected. Data will then be modelled and parameterized in an experimental context of cutting-edge big data analysis. All data variables will be recorded according to a shared common ontology based on variable-specific domains in order to enhance their direct actionability. An exploratory analysis will then initiate the biomarker identification process. The second phase of the project will focus on creating multiple multivariate models trained though advanced machine learning (ML) and AI techniques for the specific areas of interest. Finally, the developed models will be validated in order to test their robustness, transferability and generalizability, leading to the development of the DHA. All the potential clinical and scientific stakeholders will be involved in the DHA development process. The main goals aim of LANTERN project are: i) To develop predictive models for lung cancer diagnosis and histological characterization; (ii) to set up personalized predictive models for individual-specific treatments; iii) to enable feedback data loops for preventive healthcare strategies and quality of life management. DISCUSSION: The LANTERN project will develop a predictive platform based on integration of multi-omics data. This will enhance the generation of important and valuable information assets, in order to identify new biomarkers that can be used for early detection, improved tumor diagnosis and personalization of treatment protocols. ETHICS COMMITTEE APPROVAL NUMBER: 5420 - 0002485/23 from Fondazione Policlinico Universitario Agostino Gemelli IRCCS - Università Cattolica del Sacro Cuore Ethics Committee. TRIAL REGISTRATION: clinicaltrial.gov - NCT05802771.


Assuntos
Neoplasias Pulmonares , Medicina de Precisão , Humanos , Inteligência Artificial , Multiômica , Qualidade de Vida , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia
8.
J Allergy Clin Immunol ; 151(4): 911-921, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36758836

RESUMO

BACKGROUND: Lymphopenia, particularly when restricted to the T-cell compartment, has been described as one of the major clinical hallmarks in patients with coronavirus disease 2019 (COVID-19) and proposed as an indicator of disease severity. Although several mechanisms fostering COVID-19-related lymphopenia have been described, including cell apoptosis and tissue homing, the underlying causes of the decline in T-cell count and function are still not completely understood. OBJECTIVE: Given that viral infections can directly target thymic microenvironment and impair the process of T-cell generation, we sought to investigate the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on thymic function. METHODS: We performed molecular quantification of T-cell receptor excision circles and κ-deleting recombination excision circles to assess, respectively, T- and B-cell neogenesis in SARS-CoV-2-infected patients. We developed a system for in vitro culture of primary human thymic epithelial cells (TECs) to mechanistically investigate the impact of SARS-CoV-2 on TEC function. RESULTS: We showed that patients with COVID-19 had reduced thymic function that was inversely associated with the severity of the disease. We found that angiotensin-converting enzyme 2, through which SARS-CoV-2 enters the host cells, was expressed by thymic epithelium, and in particular by medullary TECs. We also demonstrated that SARS-CoV-2 can target TECs and downregulate critical genes and pathways associated with epithelial cell adhesion and survival. CONCLUSIONS: Our data demonstrate that the human thymus is a target of SARS-CoV-2 and thymic function is altered following infection. These findings expand our current knowledge of the effects of SARS-CoV-2 infection on T-cell homeostasis and suggest that monitoring thymic activity may be a useful marker to predict disease severity and progression.


Assuntos
COVID-19 , Linfopenia , Humanos , COVID-19/metabolismo , SARS-CoV-2 , Timo , Linfopenia/genética , Gravidade do Paciente
9.
Cell Death Dis ; 12(5): 421, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33927191

RESUMO

Liver fibrosis (LF) is a dangerous clinical condition with no available treatment. Inflammation plays a critical role in LF progression. Glucocorticoid-induced leucine zipper (GILZ, encoded in mice by the Tsc22d3 gene) mimics many of the anti-inflammatory effects of glucocorticoids, but its role in LF has not been directly addressed. Here, we found that GILZ deficiency in mice was associated with elevated CCL2 production and pro-inflammatory leukocyte infiltration at the early LF stage, resulting in enhanced LF development. RNA interference-mediated in vivo silencing of the CCL2 receptor CCR2 abolished the increased leukocyte recruitment and the associated hepatic stellate cell activation in the livers of GILZ knockout mice. To highlight the clinical relevance of these findings, we found that TSC22D3 mRNA expression was significantly downregulated and was inversely correlated with that of CCL2 in the liver samples of patients with LF. Altogether, these data demonstrate a protective role of GILZ in LF and uncover the mechanism, which can be targeted therapeutically. Therefore, modulating GILZ expression and its downstream targets represents a novel avenue for pharmacological intervention for treating LF and possibly other liver inflammatory disorders.


Assuntos
Quimiocina CCL2/metabolismo , Leucócitos/metabolismo , Cirrose Hepática/metabolismo , Fatores de Transcrição/metabolismo , Animais , Humanos , Leucócitos/patologia , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Knockout
10.
J Cell Mol Med ; 25(1): 217-228, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33247627

RESUMO

Poor prognosis in heart failure and the lack of real breakthrough strategies validate targeting myocardial remodelling and the intracellular signalling involved in this process. So far, there are no effective strategies to counteract hypertrophy, an independent predictor of heart failure progression and death. Glucocorticoid-induced leucine zipper (GILZ) is involved in inflammatory signalling, but its role in cardiac biology is unknown. Using GILZ-knockout (KO) mice and an experimental model of hypertrophy and diastolic dysfunction, we addressed the role of GILZ in adverse myocardial remodelling. Infusion of angiotensin II (Ang II) resulted in myocardial dysfunction, inflammation, apoptosis, fibrosis, capillary rarefaction and hypertrophy. Interestingly, GILZ-KO showed more evident diastolic dysfunction and aggravated hypertrophic response compared with WT after Ang II administration. Both cardiomyocyte and left ventricular hypertrophy were more pronounced in GILZ-KO mice. On the other hand, Ang II-induced inflammatory and fibrotic phenomena, cell death and reduction in microvascular density, remained invariant between the WT and KO groups. The analysis of regulators of hypertrophic response, GATA4 and FoxP3, demonstrated an up-regulation in WT mice infused with Ang II; conversely, such an increase did not occur in GILZ-KO hearts. These data on myocardial response to Ang II in mice lacking GILZ indicate that this protein is a new element that can be mechanistically involved in cardiovascular pathology.


Assuntos
Diástole , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fatores de Transcrição/deficiência , Angiotensina II , Animais , Pressão Sanguínea , Capilares/patologia , Morte Celular , Matriz Extracelular/metabolismo , Fibrose , Hipertrofia , Hipertrofia Ventricular Esquerda/complicações , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Inflamação/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Odontology ; 109(2): 524-539, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33211211

RESUMO

To analyze the effects of four universal adhesives (Optibond Solo Plus-OB, Universal Bond-UB, Prime&Bond Active-PBA, FuturaBond M + -FB) on human gingival fibroblasts in terms of cytotoxicity, morphology and function. After in vitro exposure for up to 48 h, fibroblast viability was determined by the MTT assay determined, morphology by phase-contrast microscopy and migration by the scratch wound assay. Expression levels of IL1ß, IL6, IL8, IL10, TNFα and VEGF genes were assessed by RT-PCR and their protein production by Western blot analysis. Apoptosis and cell cycle were analyzed by flow cytometry. OB and UB induced early morphological changes on fibroblasts (3 h) with extended cell death at 24 h/48 h. Gene expression of collagen type I and fibronectin increased fivefold compared with controls, elastin disappeared and elastase increased threefold, indicating gingival tissue tended to become fibrotic. Only UB and OB increased gene expression of inflammatory markers: IL1ß at 3 and 48 h (up to about three times), IL6 and IL8 at 3 h (up to almost four times) which corresponded to the increase of the activated form NF-kB. All adhesives showed an effect on the functionality of fibroblasts with cytotoxic effect time and concentration dependent. Among all the OB and UB adhesives, they showed the greatest cell damage. The in-depth analysis of the effects of universal adhesives and possible functional effects represents an important information for the clinician towards choosing the most suitable adhesive system.


Assuntos
Colagem Dentária , Gengiva , Adesivos , Colágeno Tipo I , Cimentos Dentários , Adesivos Dentinários , Fibroblastos , Humanos , Teste de Materiais , Cimentos de Resina
12.
FASEB J ; 34(3): 4684-4701, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32030813

RESUMO

Statins, the most prescribed class of drugs for the treatment of hypercholesterolemia, can cause muscle-related adverse effects. It has been shown that the glucocorticoid-induced leucine zipper (GILZ) plays a key role in the anti-myogenic action of dexamethasone. In the present study, we aimed to evaluate the role of GILZ in statin-induced myopathy. Statins induced GILZ expression in C2C12 cells, primary murine myoblasts/myotubes, primary human myoblasts, and in vivo in zebrafish embryos and human quadriceps femoris muscle. Gilz induction was mediated by FOXO3 activation and binding to the Gilz promoter, and could be reversed by the addition of geranylgeranyl, but not farnesyl, pyrophosphate. Atorvastatin decreased Akt phosphorylation and increased cleaved caspase-3 levels in myoblasts. This effect was reversed in myoblasts from GILZ knockout mice. Similarly, myofibers isolated from knockout animals were more resistant toward statin-induced cell death than their wild-type counterparts. Statins also impaired myoblast differentiation, and this effect was accompanied by GILZ induction. The in vivo relevance of our findings was supported by the observation that gilz overexpression in zebrafish embryos led to impaired embryonic muscle development. Taken together, our data point toward GILZ as an essential mediator of the molecular mechanisms leading to statin-induced muscle damage.


Assuntos
Glucocorticoides/farmacologia , Zíper de Leucina/fisiologia , Músculos/metabolismo , Músculos/patologia , Animais , Western Blotting , Linhagem Celular , Células Cultivadas , Imunoprecipitação da Cromatina , Imunofluorescência , Humanos , Hibridização In Situ , Lentivirus/genética , Camundongos , Camundongos Endogâmicos C57BL , Músculos/efeitos dos fármacos , Fosfatos de Poli-Isoprenil/farmacologia , Peixe-Zebra
13.
Clin Epigenetics ; 11(1): 121, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31439048

RESUMO

BACKGROUND: Epigenetic regulation is important in hematopoiesis, but the involvement of histone variants is poorly understood. Myelodysplastic syndromes (MDS) are heterogeneous clonal hematopoietic stem cell (HSC) disorders characterized by ineffective hematopoiesis. MacroH2A1.1 is a histone H2A variant that negatively correlates with the self-renewal capacity of embryonic, adult, and cancer stem cells. MacroH2A1.1 is a target of the frequent U2AF1 S34F mutation in MDS. The role of macroH2A1.1 in hematopoiesis is unclear. RESULTS: MacroH2A1.1 mRNA levels are significantly decreased in patients with low-risk MDS presenting with chromosomal 5q deletion and myeloid cytopenias and tend to be decreased in MDS patients carrying the U2AF1 S34F mutation. Using an innovative mouse allele lacking the macroH2A1.1 alternatively spliced exon, we investigated whether macroH2A1.1 regulates HSC homeostasis and differentiation. The lack of macroH2A1.1 decreased while macroH2A1.1 haploinsufficiency increased HSC frequency upon irradiation. Moreover, bone marrow transplantation experiments showed that both deficiency and haploinsufficiency of macroH2A1.1 resulted in enhanced HSC differentiation along the myeloid lineage. Finally, RNA-sequencing analysis implicated macroH2A1.1-mediated regulation of ribosomal gene expression in HSC homeostasis. CONCLUSIONS: Together, our findings suggest a new epigenetic process contributing to hematopoiesis regulation. By combining clinical data with a discrete mutant mouse model and in vitro studies of human and mouse cells, we identify macroH2A1.1 as a key player in the cellular and molecular features of MDS. These data justify the exploration of macroH2A1.1 and associated proteins as therapeutic targets in hematological malignancies.


Assuntos
Anemia Macrocítica/genética , Regulação para Baixo , Células-Tronco Hematopoéticas/citologia , Histonas/genética , Síndromes Mielodisplásicas/genética , Animais , Diferenciação Celular , Deleção Cromossômica , Cromossomos Humanos Par 5/genética , Modelos Animais de Doenças , Epigênese Genética , Haploinsuficiência , Células-Tronco Hematopoéticas/química , Humanos , Camundongos , Mutação , Sítios de Splice de RNA , Análise de Sequência de RNA
14.
Front Immunol ; 9: 1720, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30083167

RESUMO

Glucocorticoid-induced leucine zipper (GILZ) is transcriptionally upregulated by glucocorticoids (GCs) and mediates many of the anti-inflammatory effects of GCs. Since B cell activity has been linked to cytokine production and modulation of inflammatory responses, we herein investigated the role of GILZ in B cells during colitis development. B cell-specific gilz knock-out (gilz B cKO) mice exhibited increased production of the pro-inflammatory cytokine IFN-γ in B cells, and consequently CD4+ T cell activation. Increased IFN-γ production in B cells was associated with enhanced transcriptional activity of the transcription factor activator protein-1 (AP-1) on the IFN-γ promoter. Moreover, GILZ deficiency in B cells was linked to enhanced susceptibility to experimental colitis in mice, and this was reversed by administering GILZ protein. Interestingly, we observed increased production of IFN-γ in both B and T cells infiltrating the lamina propria (LP) of gilz B cKO mice. Together, these findings indicate that GILZ controls IFN-γ production in B cells, which also affects T cell activity, and increased production of IFN-γ by B and T cells in LP is associated with predisposition to inflammatory colitis in mice.

15.
Front Immunol ; 9: 3111, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30723476

RESUMO

Activation of toll-like receptors (TLRs) plays a pivotal role in the host defense against bacteria and results in the activation of NF-κB-mediated transcription of proinflammatory mediators. Glucocorticoid-induced leucine zipper (GILZ) is an anti-inflammatory mediator, which inhibits NF-κB activity in macrophages. Thus, we aimed to investigate the regulation and role of GILZ expression in primary human and murine macrophages upon TLR activation. Treatment with TLR agonists, e.g., Pam3CSK4 (TLR1/2) or LPS (TLR4) rapidly decreased GILZ mRNA and protein levels. In consequence, GILZ downregulation led to enhanced induction of pro-inflammatory mediators, increased phagocytic activity, and a higher capacity to kill intracellular bacteria (Salmonella enterica serovar typhimurium), as shown in GILZ knockout macrophages. Treatment with the TLR3 ligand polyinosinic: polycytidylic acid [Poly(I:C)] did not affect GILZ mRNA levels, although GILZ protein expression was decreased. This effect was paralleled by sensitization toward TLR1/2- and TLR4-agonists. A bioinformatics approach implicated more than 250 miRNAs as potential GILZ regulators. Microarray analysis revealed that the expression of several potentially GILZ-targeting miRNAs was increased after Poly(I:C) treatment in primary human macrophages. We tested the ability of 11 of these miRNAs to target GILZ by luciferase reporter gene assays. Within this small set, four miRNAs (hsa-miR-34b*,-222,-320d,-484) were confirmed as GILZ regulators, suggesting that GILZ downregulation upon TLR3 activation is a consequence of the synergistic actions of multiple miRNAs. In summary, our data show that GILZ downregulation promotes macrophage activation. GILZ downregulation occurs both via MyD88-dependent and -independent mechanisms and can involve decreased mRNA or protein stability and an attenuated translation.


Assuntos
Macrófagos/imunologia , Infecções por Salmonella/imunologia , Receptores Toll-Like/metabolismo , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Linhagem Celular Tumoral , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Ativação de Macrófagos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Fagocitose/imunologia , Poli I-C/farmacologia , Cultura Primária de Células , Infecções por Salmonella/microbiologia , Salmonella typhimurium/imunologia , Receptores Toll-Like/agonistas , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Regulação para Cima/imunologia
16.
J Immunol ; 199(9): 3031-3041, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28939758

RESUMO

The mechanisms leading to autoimmune and inflammatory diseases in the CNS have not been elucidated. The environmental triggers of the aberrant presence of CD4+ T cells in the CNS are not known. In this article, we report that abnormal ß-catenin expression in T cells drives a fatal neuroinflammatory disease in mice that is characterized by CNS infiltration of T cells, glial activation, and progressive loss of motor function. We show that enhanced ß-catenin expression in T cells leads to aberrant and Th1-biased T cell activation, enhanced expression of integrin α4ß1, and infiltration of activated T cells into the spinal cord, without affecting regulatory T cell function. Importantly, expression of ß-catenin in mature naive T cells was sufficient to drive integrin α4ß1 expression and CNS migration, whereas pharmacologic inhibition of integrin α4ß1 reduced the abnormal T cell presence in the CNS of ß-catenin-expressing mice. Together, these results implicate deregulation of the Wnt/ß-catenin pathway in CNS inflammation and suggest novel therapeutic strategies for neuroinflammatory disorders.


Assuntos
Integrina alfa4beta1/imunologia , Doenças da Medula Espinal/imunologia , Medula Espinal/imunologia , Células Th1/imunologia , Via de Sinalização Wnt/imunologia , beta Catenina/imunologia , Animais , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Integrina alfa4beta1/genética , Camundongos , Camundongos Knockout , Medula Espinal/patologia , Doenças da Medula Espinal/genética , Doenças da Medula Espinal/patologia , Células Th1/patologia , Via de Sinalização Wnt/genética , beta Catenina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...