Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antiviral Res ; 208: 105457, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36332755

RESUMO

Year-round virological characterization of circulating epidemic influenza viruses is conducted worldwide to detect the emergence of viruses that may escape pre-existing immunity or acquire resistance to antivirals. High throughput phenotypic assays are needed to complement the sequence-based analysis of circulating viruses and improve pandemic preparedness. The recent entry of a polymerase inhibitor, baloxavir, into the global market further highlighted this need. Here, we optimized a cell-based assay that considerably streamlines antiviral and antigenic testing by replacing lengthy immunostaining and imaging procedures used in current assay with measuring the enzymatic activity of nascent neuraminidase (NA) molecules expressed on the surface of virus-infected cells. For convenience, this new assay was named IRINA (Influenza Replication Inhibition Neuraminidase-based Assay). IRINA was successfully validated to assess inhibitory activity of baloxavir on virus replication by testing a large set (>150) of influenza A and B viruses, including drug resistant strains and viruses collected during 2017-2022. To test its versatility, IRINA was utilized to evaluate neutralization activity of a broadly reactive human anti-HA monoclonal antibody, FI6, and post-infection ferret antisera, as well as the inhibition of NA enzyme activity by NA inhibitors. Performance of IRINA was tested in parallel using respective conventional assays. IRINA offers an attractive alternative to current phenotypic assays, while maintaining reproducibility and high throughput capacity. Additionally, the improved turnaround time may prove to be advantageous when conducting time sensitive studies, such as investigating a new virus outbreak. This assay can meet the needs of surveillance laboratories by providing a streamlined and cost-effective approach for virus characterization.


Assuntos
Influenza Humana , Neuraminidase , Animais , Humanos , Reprodutibilidade dos Testes , Farmacorresistência Viral , Furões , Replicação Viral , Antivirais/farmacologia , Antivirais/uso terapêutico , Inibidores Enzimáticos/farmacologia , Oseltamivir/farmacologia
2.
Sci Adv ; 7(51): eabj9786, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34910504

RESUMO

Erbium ions embedded in crystals have unique properties for quantum information processing, because of their optical transition at 1.5 µm and of the large magnetic moment of their effective spin-1/2 electronic ground state. Most applications of erbium require, however, long electron spin coherence times, and this has so far been missing. Here, by selecting a host matrix with a low nuclear-spin density (CaWO4) and by quenching the spectral diffusion due to residual paramagnetic impurities at millikelvin temperatures, we obtain a 23-ms coherence time on the Er3+ electron spin transition. This is the longest Hahn echo electron spin coherence time measured in a material with a natural abundance of nuclear spins and on a magnetically sensitive transition. Our results establish Er3+:CaWO4 as a potential platform for quantum networks.

3.
Nature ; 600(7889): 434-438, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34912088

RESUMO

Quantum emitters respond to resonant illumination by radiating part of the absorbed energy. A component of this radiation field is phase coherent with the driving tone, whereas another component is incoherent and consists of spontaneously emitted photons, forming the fluorescence signal1. Atoms, molecules and colour centres are routinely detected by their fluorescence at optical frequencies, with important applications in quantum technology2,3 and microscopy4-7. By contrast, electron spins are usually detected by the phase-coherent echoes that they emit in response to microwave driving pulses8. The incoherent part of their radiation-a stream of microwave photons spontaneously emitted upon individual spin relaxation events-has not been observed so far because of the low spin radiative decay rate and of the lack of single microwave photon detectors (SMPDs). Here using superconducting quantum devices, we demonstrate the detection of a small ensemble of donor spins in silicon by their fluorescence at microwave frequencies and millikelvin temperatures. We enhance their radiative decay rate by coupling them to a high-quality-factor and small-mode-volume superconducting resonator9, and we connect the device output to a newly developed SMPD10 based on a superconducting qubit. In addition, we show that the SMPD can be used to detect spin echoes and that standard spin characterization measurements (Rabi nutation and spectroscopy) can be achieved with both echo and fluorescence detection. We discuss the potential of SMPD detection as a method for magnetic resonance spectroscopy of small numbers of spins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA