Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 8(1): 1586, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29162820

RESUMO

Saturn's largest moon Titan has a substantial nitrogen-methane atmosphere, with strong seasonal effects, including formation of winter polar vortices. Following Titan's 2009 northern spring equinox, peak solar heating moved to the northern hemisphere, initiating south-polar subsidence and winter polar vortex formation. Throughout 2010-2011, strengthening subsidence produced a mesospheric hot-spot and caused extreme enrichment of photochemically produced trace gases. However, in 2012 unexpected and rapid mesospheric cooling was observed. Here we show extreme trace gas enrichment within the polar vortex dramatically increases mesospheric long-wave radiative cooling efficiency, causing unusually cold temperatures 2-6 years post-equinox. The long time-frame to reach a stable vortex configuration results from the high infrared opacity of Titan's trace gases and the relatively long atmospheric radiative time constant. Winter polar hot-spots have been observed on other planets, but detection of post-equinox cooling is so far unique to Titan.

2.
Sci Rep ; 3: 2410, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23934437

RESUMO

Here we report the combined spacecraft observations of Saturn acquired over one Saturnian year (~29.5 Earth years), from the Voyager encounters (1980-81) to the new Cassini reconnaissance (2009-10). The combined observations reveal a strong temporal increase of tropic temperature (~10 Kelvins) around the tropopause of Saturn (i.e., 50 mbar), which is stronger than the seasonal variability (~a few Kelvins). We also provide the first estimate of the zonal winds at 750 mbar, which is close to the zonal winds at 2000 mbar. The quasi-consistency of zonal winds between these two levels provides observational support to a numerical suggestion inferring that the zonal winds at pressures greater than 500 mbar do not vary significantly with depth. Furthermore, the temporal variation of zonal winds decreases its magnitude with depth, implying that the relatively deep zonal winds are stable with time.


Assuntos
Imagens de Satélites/métodos , Saturno , Estações do Ano , Astronave , Tempo (Meteorologia)
3.
Nature ; 491(7426): 732-5, 2012 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-23192150

RESUMO

Saturn's moon Titan has a nitrogen atmosphere comparable to Earth's, with a surface pressure of 1.4 bar. Numerical models reproduce the tropospheric conditions very well but have trouble explaining the observed middle-atmosphere temperatures, composition and winds. The top of the middle-atmosphere circulation has been thought to lie at an altitude of 450 to 500 kilometres, where there is a layer of haze that appears to be separated from the main haze deck. This 'detached' haze was previously explained as being due to the co-location of peak haze production and the limit of dynamical transport by the circulation's upper branch. Here we report a build-up of trace gases over the south pole approximately two years after observing the 2009 post-equinox circulation reversal, from which we conclude that middle-atmosphere circulation must extend to an altitude of at least 600 kilometres. The primary drivers of this circulation are summer-hemisphere heating of haze by absorption of solar radiation and winter-hemisphere cooling due to infrared emission by haze and trace gases; our results therefore imply that these effects are important well into the thermosphere (altitudes higher than 500 kilometres). This requires both active upper-atmosphere chemistry, consistent with the detection of high-complexity molecules and ions at altitudes greater than 950 kilometres, and an alternative explanation for the detached haze, such as a transition in haze particle growth from monomers to fractal structures.

4.
Science ; 332(6036): 1413-7, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21596955

RESUMO

Saturn's slow seasonal evolution was disrupted in 2010-2011 by the eruption of a bright storm in its northern spring hemisphere. Thermal infrared spectroscopy showed that within a month, the resulting planetary-scale disturbance had generated intense perturbations of atmospheric temperatures, winds, and composition between 20° and 50°N over an entire hemisphere (140,000 kilometers). The tropospheric storm cell produced effects that penetrated hundreds of kilometers into Saturn's stratosphere (to the 1-millibar region). Stratospheric subsidence at the edges of the disturbance produced "beacons" of infrared emission and longitudinal temperature contrasts of 16 kelvin. The disturbance substantially altered atmospheric circulation, transporting material vertically over great distances, modifying stratospheric zonal jets, exciting wave activity and turbulence, and generating a new cold anticyclonic oval in the center of the disturbance at 41°N.

5.
Faraday Discuss ; 147: 65-81; discussion 83-102, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21302543

RESUMO

In this paper we describe the first quantitative search for several molecules in Titan's stratosphere in Cassini CIRS infrared spectra. These are: ammonia (NH3), methanol (CH3OH), formaldehyde (H2CO), and acetonitrile (CH3CN), all of which are predicted by photochemical models but only the last of which has been observed, and not in the infrared. We find non-detections in all cases, but derive upper limits on the abundances from low-noise observations at 25 degrees S and 75 degrees N. Comparing these constraints to model predictions, we conclude that CIRS is highly unlikely to see NH3 or CH3OH emissions. However, CH3CN and H2CO are closer to CIRS detectability, and we suggest ways in which the sensitivity threshold may be lowered towards this goal.

6.
Appl Opt ; 48(10): 1912-25, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19340146

RESUMO

The composite infrared spectrometer (CIRS) instrument on board the Cassini Saturn orbiter employs two 1x10 HgCdTe detector arrays for mid-infrared remote sensing of Titan's and Saturn's atmospheres. In this paper we show that the real detector spatial response functions, as measured in ground testing before launch, differ significantly from idealized "boxcar" responses. We further show that neglecting this true spatial response function when modeling CIRS spectra can have a significant effect on interpretation of the data, especially in limb-sounding mode, which is frequently used for Titan science. This result has implications not just for CIRS data analysis but for other similar instrumental applications.

7.
Science ; 319(5871): 1801, 2008 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-18369142

RESUMO

The camera onboard the Cassini spacecraft has allowed us to observe many of Saturn's cloud features. We present observations of Saturn's south polar vortex (SPV) showing that it shares some properties with terrestrial hurricanes: cyclonic circulation, warm central region (the eye) surrounded by a ring of high clouds (the eye wall), and convective clouds outside the eye. The polar location and the absence of an ocean are major differences. It also shares properties with the polar vortices on Venus, such as polar location, cyclonic circulation, warm center, and long lifetime, but the Venus vortices have cold collars and are not associated with convective clouds. The SPV's combination of properties is unique among vortices in the solar system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...