Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Pediatr Pulmonol ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695557

RESUMO

RATIONALE: Lung T1 MRI is a potential method to assess cystic fibrosis (CF) lung disease that is safe, quick, and widely available, but there are no data in children with mild CF lung disease. OBJECTIVE: Assess the ability of lung T1 MRI to detect abnormalities in children with mild CF lung disease. METHODS: We performed T1 MRI, multiple breath washout (MBW), chest computed tomography (CT), and spirometry in a cohort of 45 children with mild CF lung disease (6-11 years of age). MAIN RESULTS: Despite mean normal ppFEV1 values, the majority of children with CF in this study exhibited mild lung disease evident in lung clearance index (LCI) measured by MBW, chest CT Brody scores, and percent normal lung perfusion (%NLP) measured by T1 MRI. The %NLP correlated with chest CT Brody scores, as did LCI, but %NLP and LCI did not correlate with each other. Analysis of the Brody subscores showed that %NLP and LCI largely correlated with different Brody subscores. CONCLUSIONS: T1 MRI can detect mild CF lung disease in children and correlates with chest CT findings. The %NLP from T1 MRI and LCI correlate with different chest CT Brody subscores, suggesting they provide complementary information about CF lung disease.

2.
ArXiv ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38745701

RESUMO

Quantitative MRI enables direct quantification of contrast agent concentrations in contrast-enhanced scans. However, the lengthy scan times required by conventional methods are inadequate for tracking contrast agent transport dynamically in mouse brain. We developed a 3D MR fingerprinting (MRF) method for simultaneous T1 and T2 mapping across the whole mouse brain with 4.3-min temporal resolution. We designed a 3D MRF sequence with variable acquisition segment lengths and magnetization preparations on a 9.4T preclinical MRI scanner. Model-based reconstruction approaches were employed to improve the accuracy and speed of MRF acquisition. The method's accuracy for T1 and T2 measurements was validated in vitro, while its repeatability of T1 and T2 measurements was evaluated in vivo (n=3). The utility of the 3D MRF sequence for dynamic tracking of intracisternally infused Gd-DTPA in the whole mouse brain was demonstrated (n=5). Phantom studies confirmed accurate T1 and T2 measurements by 3D MRF with an undersampling factor up to 48. Dynamic contrast-enhanced (DCE) MRF scans achieved a spatial resolution of 192 x 192 x 500 um3 and a temporal resolution of 4.3 min, allowing for the analysis and comparison of dynamic changes in concentration and transport kinetics of intracisternally infused Gd-DTPA across brain regions. The sequence also enabled highly repeatable, high-resolution T1 and T2 mapping of the whole mouse brain (192 x 192 x 250 um3) in 30 min. We present the first dynamic and multi-parametric approach for quantitatively tracking contrast agent transport in the mouse brain using 3D MRF.

3.
Sens Diagn ; 3(4): 623-630, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646186

RESUMO

Gadolinium (Gd)-based contrast agents (CAs) are widely used to enhance anatomical details in magnetic resonance imaging (MRI). Significant research has expanded the field of CAs into bioresponsive CAs by modulating the signal to image and monitor biochemical processes, such as pH. In this work, we introduce the modular, dynamic actuation mechanism of DNA-based nanostructures as a new way to modulate the MRI signal based on the rotational correlation time, τR. We combined a pH-responsive oligonucleotide (i-motif) and a clinical standard CA (Gd-DOTA) to develop a pH-responsive MRI CA. The i-motif folds into a quadruplex under acidic conditions and was incorporated onto gold nanoparticles (iM-GNP) to achieve increased relaxivity, r1, compared to the unbound i-motif. In vitro, iM-GNP resulted in a significant increase in r1 over a decreasing pH range (7.5-4.5) with a calculated pKa = 5.88 ± 0.01 and a 16.7% change per 0.1 pH unit. In comparison, a control CA with a non-responsive DNA strand (T33-GNP) did not show a significant change in r1 over the same pH range. The iM-GNP was further evaluated in 20% human serum and demonstrated a 28.14 ± 11.2% increase in signal from neutral pH to acidic pH. This approach paves a path for novel programmable, dynamic DNA-based complexes for τR-modulated bioresponsive MRI CAs.

4.
Sci Rep ; 13(1): 13882, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620371

RESUMO

Recent studies have suggested the glymphatic system as a key mechanism of waste removal in the brain. Dynamic contrast-enhanced MRI (DCE-MRI) using intracisternally administered contrast agents is a promising tool for assessing glymphatic function in the whole brain. In this study, we evaluated the transport kinetics and distribution of three MRI contrast agents with vastly different molecular sizes in mice. Our results demonstrate that oxygen-17 enriched water (H217O), which has direct access to parenchymal tissues via aquaporin-4 water channels, exhibited significantly faster and more extensive transport compared to the two gadolinium-based contrast agents (Gd-DTPA and GadoSpin). Time-lagged correlation and clustering analyses also revealed different transport pathways for Gd-DTPA and H217O. Furthermore, there were significant differences in transport kinetics of the three contrast agents to the lateral ventricles, reflecting the differences in forces that drive solute transport in the brain. These findings suggest the size-dependent transport pathways and kinetics of intracisternally administered contrast agents and the potential of DCE-MRI for assessing multiple aspects of solute transport in the glymphatic system.


Assuntos
Meios de Contraste , Gadolínio DTPA , Animais , Camundongos , Cinética , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética
5.
Res Sq ; 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36798228

RESUMO

Background: Recent studies have suggested the glymphatic system as a solute transport pathway and waste removal mechanism in the brain. Imaging intracisternally administered tracers provides the opportunity of assessing various aspects of the glymphatic function. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) allows the evaluation of both the kinetics and spatial distribution of tracer transport in the whole brain. However, assessing mouse glymphatic function by DCE-MRI has been challenged by the small size of a mouse brain and the limited volume of fluids that can be delivered intracisternally without significantly altering the intracranial pressure. Further, previous studies in rats suggest that assessment of glymphatic function by DCE-MRI is dependent on the molecular size of the contrast agents. Methods: We established and validated an intracisternal infusion protocol in mice that allowed the measurements of the entire time course of contrast agent transport for 2 hours. The transport kinetics and distribution of three MRI contrast agents with drastically different molecular weights (MWs): Gd-DTPA (MW=661.8 Da, n=7), GadoSpin-P (MW=200 kDa, n=6), and oxygen-17 enriched water (H 2 17 O, MW=19 Da, n=7), were investigated. Results: The transport of H 2 17 O was significantly faster and more extensive than the two gadolinium-based contrast agents. Time-lagged correlation analysis and clustering analysis comparing the kinetics of Gd-DTPA and H 2 17 O transport also showed different cluster patterns and lag time between different regions of the brain, suggesting different transport pathways for H 2 17 O because of its direct access to parenchymal tissues via the aquaporin-4 water channels. Further, there were also significant differences in the transport kinetics of the three tracers to the lateral ventricles, which reflects the differences in forces that drive tracer transport in the brain. Conclusions: Comparison of the transport kinetics and distribution of three MRI contrast agents with different molecular sizes showed drastically different transport profiles and clustering patterns, suggesting that the transport pathways and kinetics in the glymphatic system are size-dependent.

6.
Nat Cancer ; 3(7): 852-865, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35681100

RESUMO

Nutrient-deprived conditions in the tumor microenvironment (TME) restrain cancer cell viability due to increased free radicals and reduced energy production. In pancreatic cancer cells a cytosolic metabolic enzyme, wild-type isocitrate dehydrogenase 1 (wtIDH1), enables adaptation to these conditions. Under nutrient starvation, wtIDH1 oxidizes isocitrate to generate α-ketoglutarate (αKG) for anaplerosis and NADPH to support antioxidant defense. In this study, we show that allosteric inhibitors of mutant IDH1 (mIDH1) are potent wtIDH1 inhibitors under conditions present in the TME. We demonstrate that low magnesium levels facilitate allosteric inhibition of wtIDH1, which is lethal to cancer cells when nutrients are limited. Furthermore, the Food & Drug Administration (FDA)-approved mIDH1 inhibitor ivosidenib (AG-120) dramatically inhibited tumor growth in preclinical models of pancreatic cancer, highlighting this approach as a potential therapeutic strategy against wild-type IDH1 cancers.


Assuntos
Isocitrato Desidrogenase , Neoplasias Pancreáticas , Regulação Alostérica , Inibidores Enzimáticos/farmacologia , Humanos , Isocitrato Desidrogenase/genética , Mutação , Nutrientes , Neoplasias Pancreáticas/tratamento farmacológico , Microambiente Tumoral , Neoplasias Pancreáticas
7.
Cell Metab ; 34(4): 549-563.e8, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35298903

RESUMO

Asprosin is a fasting-induced glucogenic and centrally acting orexigenic hormone. The olfactory receptor Olfr734 is known to be the hepatic receptor for asprosin that mediates its effects on glucose production, but the receptor for asprosin's orexigenic function has been unclear. Here, we have identified protein tyrosine phosphatase receptor δ (Ptprd) as the orexigenic receptor for asprosin. Asprosin functions as a high-affinity Ptprd ligand in hypothalamic AgRP neurons, regulating the activity of this circuit in a cell-autonomous manner. Genetic ablation of Ptprd results in a strong loss of appetite, leanness, and an inability to respond to the orexigenic effects of asprosin. Ablation of Ptprd specifically in AgRP neurons causes resistance to diet-induced obesity. Introduction of the soluble Ptprd ligand-binding domain in the circulation of mice suppresses appetite and blood glucose levels by sequestering plasma asprosin. Identification of Ptprd as the orexigenic asprosin receptor creates a new avenue for the development of anti-obesity therapeutics.


Assuntos
Hormônios Peptídicos , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores , Proteína Relacionada com Agouti , Animais , Fibrilina-1/metabolismo , Glucose/metabolismo , Ligantes , Camundongos , Obesidade/metabolismo , Fragmentos de Peptídeos/metabolismo , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo
9.
Radiology ; 300(2): 380-387, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34100680

RESUMO

Background MR fingerprinting (MRF) provides rapid and simultaneous quantification of multiple tissue parameters in a single scan. Purpose To evaluate a rapid kidney MRF technique at 3.0 T in phantoms, healthy volunteers, and patients. Materials and Methods A 15-second kidney MRF acquisition was designed with 12 acquisition segments, a range of low flip angles (5°-12°), multiple magnetization preparation schema (T1, T2, and fat suppression), and an undersampled spiral trajectory. This technique was first validated in vitro using standardized T1 and T2 phantoms. Kidney T1 and T2 maps were then obtained for 10 healthy adult volunteers (mean age ± standard deviation, 35 years ± 13; six men) and three pediatric patients with autosomal recessive polycystic kidney disease (ARPKD) (mean age, 10 years ± 3; two boys) between August 2019 and October 2020 to evaluate the method in vivo. Results Results in nine phantoms showed good agreement with spin-echo-based T1 and T2 values (R2 > 0.99). In vivo MRF kidney T1 and T2 assessments in healthy adult volunteers (cortex: T1, 1362 msec ± 5; T2, 64 msec ± 5; medulla: T1, 1827 msec ± 94; T2, 69 msec ± 3) were consistent with values in the literature but with improved precision in comparison with prior MRF implementations. In vivo MRF-based kidney T1 and T2 values with and without B1 correction were in good agreement (R2 > 0.96, P < .001), demonstrating limited sensitivity to B1 field inhomogeneities. Additional MRF reconstructions using the first nine segments of the MRF profiles (11-second acquisition time) were in good agreement with the reconstructions using 12 segments (15-second acquisition time) (R2 > 0.87, P < .001). Repeat kidney MRF scans for the three patients with ARPKD on successive days also demonstrated good reproducibility (T1 and T2: <3% difference). Conclusion A kidney MR fingerprinting method provided in vivo kidney T1 and T2 maps at 3.0 T in a single breath hold with improved precision and no need for B1 correction. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Laustsen in this issue.


Assuntos
Rim/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Rim Policístico Autossômico Recessivo/diagnóstico por imagem , Adulto , Suspensão da Respiração , Criança , Feminino , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Imagens de Fantasmas
10.
Data Brief ; 35: 106824, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33659588

RESUMO

Virtual knees, with specimen-specific anatomy and mechanics, require heterogeneous data collected on the same knee. Specimen-specific data such as the specimen geometry, physiological joint kinematics-kinetics and contact mechanics are necessary in the development of virtual knee specimens for clinical and scientific simulations. These data are also required to capture or evaluate the predictive capacity of the model to represent joint and tissue mechanical response. This document details the collection of magnetic resonance imaging data and, tibiofemoral joint and patellofemoral joint mechanical testing data. These data were acquired for a cohort of eight knee specimens representing different populations with varying gender, age and perceived health of the joint. These data were collected as part of the Open Knee(s) initiative. Imaging data when combined with joint mechanics data, may enable development and assessment of authentic specimen-specific finite element models of the knee. The data may also guide prospective studies for association of anatomical and biomechanical markers in a specimen-specific manner.

11.
ACS Sens ; 6(3): 727-732, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33625209

RESUMO

Extracellular pH is important in clinical measurements due to its correlation to cell metabolism and disease progression. In MRI, T1/T2 ratiometric analysis and other methods have been previously applied to quantify pH using conventional pulse sequences. However, for nanoparticle-based approaches, heterogeneity in size and surface functionalization tends toward qualitative rather than quantitative results. To address this limitation, we developed a novel DNA-based MRI contrast agent, pH-DMRCA, which utilizes a highly programmable and reproducible nanostructure. The pH-DMRCA is a dendritic DNA scaffold that is functionalized with a pH-responsive MRI-sensitive construct, Gd(NP-DO3A), at the end of each DNA arm. We first evaluated the r1 and r2 response of our pH-DMRCA over a range of pH values (pH = 5-9) to establish a relaxometric model of pH. These MRI-based assessments of pH were validated in a separate set of samples using a pH electrode (n = 18) and resulted in a good linear correlation (R2 = 0.99, slope = 0.98, intercept = 0). A Bland-Altman analysis of the results also showed reasonable agreement between the calculated pH and measured pH. Moreover, these pH comparisons were consistent across three different pH-DMRCA concentrations, demonstrating concentration-independence of the method. This MRI-based pH quantification methodology was further verified in human blood plasma. Given the versatility of the DNA-based nanostructures, the contrast agent has a potential to be applied to a wide variety of imaging applications where extracellular pH is important including cancer, stroke, cardiovascular disease, and other important diseases.


Assuntos
Meios de Contraste , Nanopartículas , Gadolínio , Humanos , Concentração de Íons de Hidrogênio , Imageamento por Ressonância Magnética
12.
Pediatr Res ; 89(1): 157-162, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32283547

RESUMO

BACKGROUND: Autosomal recessive polycystic kidney disease (ARPKD) is a rare but potentially lethal genetic disorder typically characterized by diffuse renal microcysts. Clinical trials for patients with ARPKD are not currently possible due to the absence of sensitive measures of ARPKD kidney disease progression and/or therapeutic efficacy. METHODS: In this study, animal and human magnetic resonance imaging (MRI) scanners were used to obtain quantitative kidney T1 and T2 relaxation time maps for both excised kidneys from bpk and wild-type (WT) mice as well as for a pediatric patient with ARPKD and a healthy adult volunteer. RESULTS: Mean kidney T1 and T2 relaxation times showed significant increases with age (p < 0.05) as well as significant increases in comparison to WT mice (p < 2 × 10-10). Significant or nearly significant linear correlations were observed for mean kidney T1 (p = 0.030) and T2 (p = 0.054) as a function of total kidney volume, respectively. Initial magnetic resonance fingerprinting assessments in a patient with ARPKD showed visible increases in both kidney T1 and T2 in comparison to the healthy volunteer. CONCLUSIONS: These preclinical and initial clinical MRI studies suggest that renal T1 and T2 relaxometry may provide an additional outcome measure to assess cystic kidney disease progression in patients with ARPKD. IMPACT: A major roadblock for implementing clinical trials in patients with ARPKD is the absence of sensitive measures of ARPKD kidney disease progression and/or therapeutic efficacy. A clinical need exists to develop a safe and sensitive measure for kidney disease progression, and eventually therapeutic efficacy, for patients with ARPKD. Mean kidney T1 and T2 MRI relaxation times showed significant increases with age (p < 0.05) as well as significant increases in comparison to WT mice (p < 2 ×10-10), indicating that T1 and T2 may provide sensitive assessments of cystic changes associated with progressive ARPKD kidney disease. This preclinical and initial clinical study suggests that MRI-based kidney T1 and T2 mapping could be used as a non-invasive assessment of ARPKD kidney disease progression. These non-invasive, quantitative MRI techniques could eventually be used as an outcome measure for clinical trials evaluating novel therapeutics aimed at limiting or preventing ARPKD kidney disease progression.


Assuntos
Rim/diagnóstico por imagem , Imageamento por Ressonância Magnética , Rim Policístico Autossômico Recessivo/diagnóstico por imagem , Adolescente , Animais , Modelos Animais de Doenças , Progressão da Doença , Humanos , Rim Policístico Autossômico Recessivo/genética , Valor Preditivo dos Testes
13.
J Physiol ; 598(18): 3941-3956, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33174711

RESUMO

KEY POINTS: Extreme aviation is accompanied by ever-present risks of hypobaric hypoxia and decompression sickness. Neuroprotection against those hazards is conferred through fractional inspired oxygen ( FI,O2 ) concentrations of 60-100% (hyperoxia). Hyperoxia reduces global cerebral perfusion (gCBF), increases reactive oxygen species within the brain and leads to cell death within the hippocampus. However, an understanding of hyperoxia's effect on cortical activity and concomitant levels of cognitive performance is lacking. This limits our understanding of whether hyperoxia could lower the brain's threshold of tolerance to physiological stressors inherent to extreme aviation, such as high gravitational forces. This study aimed to quantify the impact of hyperoxia upon global cerebral perfusion (gCBF), cognitive performance and cortical electroencephalography (EEG). Hyperoxia evoked a rapid reduction in gCBF, yet cognitive performance and vigilance were enhanced. EEG measurements revealed enhanced alpha power, suggesting less desynchrony, within the cortical temporal regions. Collectively, this work suggests hyperoxia-induced brain hypoperfusion is accompanied by enhanced cognitive processing and cortical arousal. ABSTRACT: Extreme aviators continually inspire hyperoxic gas to mitigate risk of hypoxia and decompression injury. This neuroprotection carries a physiological cost: reduced cerebral perfusion (CBF). As reduced CBF may increase vulnerability to ever-present physiological challenges during extreme aviation, we defined the magnitude and duration of hyperoxia-induced changes in CBF, cortical electrical activity and cognition in 30 healthy males and females. Magnetic resonance imaging with pulsed arterial spin labelling provided serial measurements of global CBF (gCBF), first during exposure to 21% inspired oxygen ( FI,O2 ) followed by a 30-min exposure to 100% FI,O2 . High-density EEG facilitated characterization of cortical activity during assessment of cognitive performance, also measured during exposure to 21% and 100% FI,O2 . Acid-base physiology was measured with arterial blood gases. We found that exposure to 100% FI,O2 reduced gCBF to 63% of baseline values across all participants. Cognitive performance testing at 21% FI,O2 was accompanied by increased theta and beta power with decreased alpha power across multiple cortical areas. During cognitive testing at 100% FI,O2 , alpha activity was less desynchronized within the temporal regions than at 21% FI,O2 . The collective hyperoxia-induced changes in gCBF, cognitive performance and EEG were similar across observed partial pressures of arterial oxygen ( PaO2 ), which ranged between 276-548 mmHg, and partial pressures of arterial carbon dioxide ( PaCO2 ), which ranged between 34-50 mmHg. Sex did not influence gCBF response to 100% FI,O2 . Our findings suggest hyperoxia-induced reductions in gCBF evoke enhanced levels of cortical arousal and cognitive processing, similar to those occurring during a perceived threat.


Assuntos
Hiperóxia , Circulação Cerebrovascular , Cognição , Eletroencefalografia , Feminino , Humanos , Masculino , Oxigênio , Perfusão
14.
Nano Lett ; 20(10): 7159-7167, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32845644

RESUMO

Adjuvant radiotherapy is frequently prescribed to treat cancer. To minimize radiation-related damage to healthy tissue, it requires high precision in tumor localization and radiation dose delivery. This can be achieved by MR guidance and targeted amplification of radiation dose selectively to tumors by using radiosensitizers. Here, we demonstrate prostate cancer-targeted gold nanoparticles (AuNPs) for MR-guided radiotherapy to improve the targeting precision and efficacy. By conjugating Gd(III) complexes and prostate-specific membrane antigen (PSMA) targeting ligands to AuNP surfaces, we found enhanced uptake of AuNPs by PSMA-expressing cancer cells with excellent MR contrast and radiation therapy outcome in vitro and in vivo. The AuNPs binding affinity and r1 relaxivity were dramatically improved and the combination of Au and Gd(III)provided better tumor suppression after radiation. The precise tumor localization by MR and selective tumor targeting of the PSMA-1-targeted AuNPs could enable precise radiotherapy, reduction in irradiating dose, and minimization of healthy tissue damage.


Assuntos
Nanopartículas Metálicas , Neoplasias da Próstata , Linhagem Celular Tumoral , Ouro , Humanos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia
15.
Am J Physiol Endocrinol Metab ; 319(1): E187-E195, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32396388

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic fat accumulation and impaired insulin sensitivity. Reduced hepatic ketogenesis may promote these pathologies, but data are inconclusive in humans and the link between NAFLD and reduced insulin sensitivity remains obscure. We investigated individuals with obesity-related NAFLD and hypothesized that ß-hydroxybutyrate (ßOHB; the predominant ketone species) would be reduced and related to hepatic fat accumulation and insulin sensitivity. Furthermore, we hypothesized that ketones would impact skeletal muscle mitochondrial respiration in vitro. Hepatic fat was assessed by 1H-MRS in 22 participants in a parallel design, case control study [Control: n = 7, age 50 ± 6 yr, body mass index (BMI) 30 ± 1 kg/m2; NAFLD: n = 15, age 57 ± 3 yr, BMI 35 ± 1 kg/m2]. Plasma assessments were conducted in the fasted state. Whole body insulin sensitivity was determined by the gold-standard hyperinsulinemic-euglycemic clamp. The effect of ketone dose (0.5-5.0 mM) on mitochondrial respiration was conducted in human skeletal muscle cell culture. Fasting ßOHB, a surrogate measure of hepatic ketogenesis, was reduced in NAFLD (-15.6%, P < 0.01) and correlated negatively with liver fat (r2 = 0.21, P = 0.03) and positively with insulin sensitivity (r2 = 0.30, P = 0.01). Skeletal muscle mitochondrial oxygen consumption increased with low-dose ketones, attributable to increases in basal respiration (135%, P < 0.05) and ATP-linked oxygen consumption (136%, P < 0.05). NAFLD pathophysiology includes impaired hepatic ketogenesis, which is associated with hepatic fat accumulation and impaired insulin sensitivity. This reduced capacity to produce ketones may be a potential link between NAFLD and NAFLD-associated reductions in whole body insulin sensitivity, whereby ketone concentrations impact skeletal muscle mitochondrial respiration.


Assuntos
Ácido 3-Hidroxibutírico/metabolismo , Fígado/metabolismo , Mitocôndrias Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Adulto , Idoso , Estudos de Casos e Controles , Ácidos Graxos não Esterificados/metabolismo , Feminino , Técnica Clamp de Glucose , Humanos , Técnicas In Vitro , Resistência à Insulina , Corpos Cetônicos/metabolismo , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/complicações , Espectroscopia de Prótons por Ressonância Magnética
16.
Nanomedicine ; 28: 102216, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32413511

RESUMO

Poor prognosis for glioblastoma (GBM) is a consequence of the aggressive and infiltrative nature of gliomas where individual cells migrate away from the main tumor to distant sites, making complete surgical resection and treatment difficult. In this manuscript, we characterize an invasive pediatric glioma model and determine if nanoparticles linked to a peptide recognizing the GBM tumor biomarker PTPmu can specifically target both the main tumor and invasive cancer cells in adult and pediatric glioma models. Using both iron and lipid-based nanoparticles, we demonstrate by magnetic resonance imaging, optical imaging, histology, and iron quantification that PTPmu-targeted nanoparticles effectively label adult gliomas. Using PTPmu-targeted nanoparticles in a newly characterized orthotopic pediatric SJ-GBM2 model, we demonstrate individual tumor cell labeling both within the solid tumor margins and at invasive and dispersive sites.


Assuntos
Glioblastoma/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Feminino , Compostos Férricos/química , Glioblastoma/metabolismo , Glioma/diagnóstico por imagem , Glioma/metabolismo , Humanos , Camundongos , Camundongos Nus
17.
Pediatr Radiol ; 50(7): 923-934, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32162080

RESUMO

BACKGROUND: Assessment tools for early cystic fibrosis (CF) lung disease are limited. Detecting early pulmonary disease is crucial to increasing life expectancy by starting interventions to slow the progression of the pulmonary disease with the many treatment options available. OBJECTIVE: To compare the utility of lung T1-mapping MRI with ultrashort echo time (UTE) MRI in children with cystic fibrosis in detecting early stage lung disease and monitoring pulmonary exacerbations. MATERIALS AND METHODS: We performed a prospective study in 16 children between September 2017 and January 2018. In Phase 1, we compared five CF patients with normal spirometry (mean 11.2 years) to five age- and gender-matched healthy volunteers. In Phase 2, we longitudinally evaluated six CF patients (median 11 years) in acute pulmonary exacerbation. All children had non-contrast lung T1-mapping and UTE MRI and spirometry testing. We compared the mean normalized T1 value and percentage lung volume without T1 value in CF patients and healthy subjects in Phase 1 and during treatment in Phase 2. We also performed cystic fibrosis MRI scoring. We evaluated differences in continuous variables using standard statistical tests. RESULTS: In Phase 1, mean normalized T1 values of the lung were significantly lower in CF patients in comparison to healthy controls (P=0.02) except in the right lower lobe (P=0.29). The percentage lung volume without T1 value was also significantly higher in CF patients (P=0.006). UTE MRI showed no significant differences between CF patients and healthy volunteers (P=0.11). In Phase 2, excluding one outlier case who developed systemic disease in the course of treatment, the whole-lung T1 value increased (P=0.001) and perfusion scoring improved (P=0.02) following therapy. We observed no other significant changes in the MRI scoring. CONCLUSION: Lung T1-mapping MRI can detect early regional pulmonary CF disease in children and might be helpful in the assessment of acute pulmonary exacerbations.


Assuntos
Fibrose Cística/diagnóstico por imagem , Pneumopatias/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adolescente , Estudos de Casos e Controles , Criança , Estudos Transversais , Fibrose Cística/fisiopatologia , Progressão da Doença , Feminino , Humanos , Masculino , Projetos Piloto , Estudos Prospectivos , Testes de Função Respiratória
18.
Med Sci Sports Exerc ; 52(7): 1449-1455, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32028458

RESUMO

PURPOSE: We aimed to determine the immediacy of exercise intervention on liver-specific metabolic processes in nonalcoholic fatty liver disease. METHODS: We undertook a short-term (7-d) exercise training study (60 min·d treadmill walking at 80%-85% of maximal heart rate) in obese adults (N = 13, 58 ± 3 yr, 34.3 ± 1.1 kg·m, >5% hepatic lipid by H-magnetic resonance spectroscopy). Insulin sensitivity index was estimated by oral glucose tolerance test using the Soonthorpun model. Hepatic insulin extraction (HIE) was calculated as the molar difference in area under the curve (AUC) for insulin and C-peptide (HIE = 1 - (AUCInsulin/AUCC-Pep)). RESULTS: The increases in HIE, V˙O2max, and insulin sensitivity index after the intervention were 9.8%, 9.8%, and 34%, respectively (all, P < 0.05). Basal fat oxidation increased (pre: 47 ± 6 mg·min vs post: 65 ± 6 mg·min, P < 0.05) and carbohydrate oxidation decreased (pre: 160 ± 20 mg·min vs post: 112 ± 15 mg·min, P < 0.05) with exercise training. After the intervention, HIE correlated positively with adiponectin (r = 0.56, P < 0.05) and negatively with TNF-α (r = -0.78, P < 0.001). CONCLUSIONS: By increasing HIE along with peripheral insulin sensitivity, aerobic exercise training rapidly reverses some of the underlying physiological mechanisms associated with nonalcoholic fatty liver disease, in a weight loss-independent manner. This reversal could potentially act through adipokine-related pathways.


Assuntos
Exercício Físico/fisiologia , Insulina/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Glicemia/metabolismo , Peptídeo C/sangue , Metabolismo dos Carboidratos , Peptídeo 1 Semelhante ao Glucagon/sangue , Frequência Cardíaca , Humanos , Resistência à Insulina , Metabolismo dos Lipídeos , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/complicações , Obesidade/complicações , Obesidade/metabolismo , Consumo de Oxigênio
19.
Int Urogynecol J ; 31(1): 107-115, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30666428

RESUMO

INTRODUCTION AND HYPOTHESIS: SDF-1 chemokine enhances tissue regeneration through stem cell chemotaxis, neovascularization and neuronal regeneration. We hypothesized that non-viral delivery of human plasmids that express SDF-1 (pSDF-1) may represent a novel regenerative therapy for stress urinary incontinence (SUI). METHODS: Seventy-six female rats underwent vaginal distention (VD). They were then divided into four groups according to treatment: pSDF-1 (n = 42), sham (n = 30), PBS (n = 1) and luciferase-tagged pSDF-1 (n = 3). Immediately after VD, the pSDF-1 group underwent immediate periurethral injection of pSDF-1, and the sham group received a vehicle injection followed by leak point pressure (LPP) measurement at the 4th, 7th and 14th days. Urogenital tissues were collected for histology. H&E and trichrome slides were analyzed for vascularity and collagen/muscle components of the sphincter. For the luciferase-tagged pSDF-1 group, bioluminescence scans (BLIs) were obtained on the 3rd, 7th and 14th days following injections. Statistical analysis was conducted using ANOVA with post hoc LSD tests. The Mann-Whitney U test was employed to make pair-wise comparisons between the treated and sham groups. We used IBM SPSS, version 22, for statistical analyses. RESULTS: BLI showed high expression of luciferase-tagged pSDF-1 in the pelvic area over time. VD resulted in a decline of LPP at the 4th day in both groups. The pSDF1-treated group demonstrated accelerated recovery that was significantly higher than that of the sham-treated group at the 7th day (22.64 cmH2O versus 13.99 cmH2O, p < 0.001). Functional improvement persisted until the 14th day (30.51 cmH2O versus 24.11 cmH2O, p = 0.067). Vascularity density in the pSDF-1-treated group was higher than in the sham group at the 7th and 14th days (p < 0.05). The muscle density/sphincter area increased significantly from the 4th to 14th day only in the pSDF-1 group. CONCLUSIONS: Periurethral injection of pSDF-1 after simulated childbirth accelerated the recovery of continence and regeneration of the urethral sphincter in a rat SUI model. This intervention can potentially be translated to the treatment of post-partum urinary incontinence.


Assuntos
Quimiocina CXCL12/genética , Terapia Genética/métodos , Transtornos Puerperais/prevenção & controle , Incontinência Urinária por Estresse/prevenção & controle , Animais , Modelos Animais de Doenças , Injeções , Plasmídeos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
20.
Sci Rep ; 9(1): 19888, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882792

RESUMO

Synchronous assessment of multiple MRI contrast agents in a single scanning session would provide a new "multi-color" imaging capability similar to fluorescence imaging but with high spatiotemporal resolution and unlimited imaging depth. This multi-agent MRI technology would enable a whole new class of basic science and clinical MRI experiments that simultaneously explore multiple physiologic/molecular events in vivo. Unfortunately, conventional MRI acquisition techniques are only capable of detecting and quantifying one paramagnetic MRI contrast agent at a time. Herein, the Dual Contrast - Magnetic Resonance Fingerprinting (DC-MRF) methodology was extended for in vivo application and evaluated by simultaneously and dynamically mapping the intra-tumoral concentration of two MRI contrast agents (Gd-BOPTA and Dy-DOTA-azide) in a mouse glioma model. Co-registered gadolinium and dysprosium concentration maps were generated with sub-millimeter spatial resolution and acquired dynamically with just over 2-minute temporal resolution. Mean tumor Gd and Dy concentration measurements from both single agent and dual agent DC-MRF studies demonstrated significant correlations with ex vivo mass spectrometry elemental analyses. This initial in vivo study demonstrates the potential for DC-MRF to provide a useful dual-agent MRI platform.


Assuntos
Meios de Contraste , Gadolínio , Glioma/diagnóstico por imagem , Imageamento por Ressonância Magnética , Meglumina/análogos & derivados , Neoplasias Experimentais/diagnóstico por imagem , Compostos Organometálicos , Animais , Linhagem Celular Tumoral , Meios de Contraste/química , Meios de Contraste/farmacologia , Feminino , Gadolínio/química , Gadolínio/farmacologia , Humanos , Meglumina/química , Meglumina/farmacologia , Camundongos , Camundongos Nus , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...