Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evol Lett ; 8(2): 295-310, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38525032

RESUMO

Little is known about the metabolic basis of life-history trade-offs but lipid stores seem to play a pivotal role. During reproduction, an energetically highly costly process, animals mobilize fat reserves. Conversely, reduced or curtailed reproduction promotes lipid storage in many animals. Systemic signals from the gonad seem to be involved: Caenorhabditis elegans lacking germline stem cells display endocrine changes, have increased fat stores and are long-lived. Similarly, germline-ablated Drosophila melanogaster exhibit major somatic physiological changes, but whether and how germline loss affects lipid metabolism remains largely unclear. Here we show that germline-ablated flies have profoundly altered energy metabolism at the transcriptional level and store excess fat as compared to fertile flies. Germline activity thus constrains or represses fat accumulation, and this effect is conserved between flies and worms. More broadly, our findings confirm that lipids represent a major energetic currency in which costs of reproduction are paid.

2.
J Evol Biol ; 36(12): 1761-1782, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37942504

RESUMO

Inversions are structural mutations that reverse the sequence of a chromosome segment and reduce the effective rate of recombination in the heterozygous state. They play a major role in adaptation, as well as in other evolutionary processes such as speciation. Although inversions have been studied since the 1920s, they remain difficult to investigate because the reduced recombination conferred by them strengthens the effects of drift and hitchhiking, which in turn can obscure signatures of selection. Nonetheless, numerous inversions have been found to be under selection. Given recent advances in population genetic theory and empirical study, here we review how different mechanisms of selection affect the evolution of inversions. A key difference between inversions and other mutations, such as single nucleotide variants, is that the fitness of an inversion may be affected by a larger number of frequently interacting processes. This considerably complicates the analysis of the causes underlying the evolution of inversions. We discuss the extent to which these mechanisms can be disentangled, and by which approach.


Assuntos
Inversão Cromossômica , Cromossomos , Humanos , Heterozigoto , Evolução Molecular
3.
Ecol Evol ; 13(9): e10537, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37753311

RESUMO

Microbes can have profound effects on host fitness and health and the appearance of late-onset diseases. Host-microbe interactions thus represent a major environmental context for healthy aging of the host and might also mediate trade-offs between life-history traits in the evolution of host senescence. Here, we have used the nematode Caenorhabditis elegans to study how host-microbe interactions may modulate the evolution of life histories and aging. We first characterized the effects of two non-pathogenic and one pathogenic Escherichia coli strains, together with the pathogenic Serratia marcescens DB11 strain, on population growth rates and survival of C. elegans from five different genetic backgrounds. We then focused on an outbred C. elegans population, to understand if microbe-specific effects on the reproductive schedule and in traits such as developmental rate and survival were also expressed in the presence of males and standing genetic variation, which could be relevant for the evolution of C. elegans and other nematode species in nature. Our results show that host-microbe interactions have a substantial host-genotype-dependent impact on the reproductive aging and survival of the nematode host. Although both pathogenic bacteria reduced host survival in comparison with benign strains, they differed in how they affected other host traits. Host fertility and population growth rate were affected by S. marcescens DB11 only during early adulthood, whereas this occurred at later ages with the pathogenic E. coli IAI1. In both cases, these effects were largely dependent on the host genotypes. Given such microbe-specific genotypic differences in host life history, we predict that the evolution of reproductive schedules and senescence might be critically contingent on host-microbe interactions in nature.

4.
BMC Genomics ; 24(1): 244, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147612

RESUMO

BACKGROUND: In many organisms increased reproductive effort is associated with a shortened life span. This trade-off is reflected in conserved molecular pathways that link nutrient-sensing with fecundity and longevity. Social insect queens apparently defy the fecundity / longevity trade-off as they are both, extremely long-lived and highly fecund. Here, we have examined the effects of a protein-enriched diet on these life-history traits and on tissue-specific gene expression in a termite species of low social complexity. RESULTS: On a colony level, we did not observe reduced lifespan and increased fecundity, effects typically seen in solitary model organisms, after protein enrichment. Instead, on the individual level mortality was reduced in queens that consumed more of the protein-enriched diet - and partially also in workers - while fecundity seemed unaffected. Our transcriptome analyses supported our life-history results. Consistent with life span extension, the expression of IIS (insulin/insulin-like growth factor 1 signalling) components was reduced in fat bodies after protein enrichment. Interestingly, however, genes involved in reproductive physiology (e.g., vitellogenin) were largely unaffected in fat body and head transcriptomes. CONCLUSION: These results suggest that IIS is decoupled from downstream fecundity-associated pathways, which can contribute to the remoulding of the fecundity/longevity trade-off in termites as compared to solitary insects.


Assuntos
Isópteros , Longevidade , Animais , Longevidade/fisiologia , Fertilidade , Reprodução/fisiologia , Insetos , Isópteros/genética , Dieta
5.
Mol Biol Evol ; 40(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37220650

RESUMO

Since the pioneering work of Dobzhansky in the 1930s and 1940s, many chromosomal inversions have been identified, but how they contribute to adaptation remains poorly understood. In Drosophila melanogaster, the widespread inversion polymorphism In(3R)Payne underpins latitudinal clines in fitness traits on multiple continents. Here, we use single-individual whole-genome sequencing, transcriptomics, and published sequencing data to study the population genomics of this inversion on four continents: in its ancestral African range and in derived populations in Europe, North America, and Australia. Our results confirm that this inversion originated in sub-Saharan Africa and subsequently became cosmopolitan; we observe marked monophyletic divergence of inverted and noninverted karyotypes, with some substructure among inverted chromosomes between continents. Despite divergent evolution of this inversion since its out-of-Africa migration, derived non-African populations exhibit similar patterns of long-range linkage disequilibrium between the inversion breakpoints and major peaks of divergence in its center, consistent with balancing selection and suggesting that the inversion harbors alleles that are maintained by selection on several continents. Using RNA-sequencing, we identify overlap between inversion-linked single-nucleotide polymorphisms and loci that are differentially expressed between inverted and noninverted chromosomes. Expression levels are higher for inverted chromosomes at low temperature, suggesting loss of buffering or compensatory plasticity and consistent with higher inversion frequency in warm climates. Our results suggest that this ancestrally tropical balanced polymorphism spread around the world and became latitudinally assorted along similar but independent climatic gradients, always being frequent in subtropical/tropical areas but rare or absent in temperate climates.


Assuntos
Inversão Cromossômica , Drosophila melanogaster , Animais , Drosophila melanogaster/genética , Adaptação Fisiológica/genética , Polimorfismo de Nucleotídeo Único , América do Norte
6.
Mol Biol Evol ; 40(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36703226

RESUMO

Single nucleotide polymorphisms are the most common type of genetic variation, but how these variants contribute to the adaptation of complex phenotypes is largely unknown. Experimental evolution and genome-wide association studies have demonstrated that variation in the PPARγ-homolog Eip75B has associated with longevity and life-history differences in the fruit fly Drosophila melanogaster. Using RNAi knockdown, we first demonstrate that reduced expression of Eip75B in adult flies affects lifespan, egg-laying rate, and egg volume. We then tested the effects of a naturally occurring SNP within a cis-regulatory domain of Eip75B by applying two complementary approaches: a Mendelian randomization approach using lines of the Drosophila Genetic Reference Panel, and allelic replacement using precise CRISPR/Cas9-induced genome editing. Our experiments reveal that this natural polymorphism has a significant pleiotropic effect on fecundity and egg-to-adult viability, but not on longevity or other life-history traits. Our results provide a rare functional validation at the nucleotide level and identify a natural allelic variant affecting fitness and life-history adaptation.


Assuntos
Proteínas de Ligação a DNA , Proteínas de Drosophila , Drosophila melanogaster , Animais , Proteínas de Ligação a DNA/genética , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fertilidade/genética , Estudo de Associação Genômica Ampla , Longevidade/genética , Nucleotídeos/metabolismo , Polimorfismo de Nucleotídeo Único , PPAR gama/genética , PPAR gama/metabolismo , Fatores de Transcrição/metabolismo
7.
Proc Biol Sci ; 289(1986): 20221989, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36350205

RESUMO

'Evolve and resequence' (E&R) studies in Drosophila melanogaster have identified many candidate loci underlying the evolution of ageing and life history, but experiments that validate the effects of such candidates remain rare. In a recent E&R study we have identified several alleles of the LAMMER kinase Darkener of apricot (Doa) as candidates for evolutionary changes in lifespan and fecundity. Here, we use two complementary approaches to confirm a functional role of Doa in life-history evolution. First, we used transgenic RNAi to study the effects of Doa at the whole-gene level. Ubiquitous silencing of expression in adult flies reduced both lifespan and fecundity, indicating pleiotropic effects. Second, to characterize segregating variation at Doa, we examined four candidate single nucleotide polymorphisms (SNPs; Doa-1, -2, -3, -4) using a genetic association approach. Three candidate SNPs had effects that were qualitatively consistent with expectations based on our E&R study: Doa-2 pleiotropically affected both lifespan and late-life fecundity; Doa-1 affected lifespan (but not fecundity); and Doa-4 affected late-life fecundity (but not lifespan). Finally, the last candidate allele (Doa-3) also affected lifespan, but in the opposite direction from predicted.


Assuntos
Proteínas de Drosophila , Prunus armeniaca , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila/genética , Alelos , Prunus armeniaca/genética , Prunus armeniaca/metabolismo , Longevidade , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
8.
Philos Trans R Soc Lond B Biol Sci ; 377(1856): 20210199, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35694750

RESUMO

Supergenes offer spectacular examples of long-term balancing selection in nature, but their origin and maintenance remain a mystery. Reduced recombination between arrangements, a critical aspect of many supergenes, protects adaptive multi-trait phenotypes but can lead to mutation accumulation. Mutation accumulation can stabilize the system through the emergence of associative overdominance (AOD), destabilize the system, or lead to new evolutionary outcomes. One outcome is the formation of maladaptive balanced lethal systems, where only heterozygotes remain viable and reproduce. We investigated the conditions under which these different outcomes occur, assuming a scenario of introgression after divergence. We found that AOD aided the invasion of a new supergene arrangement and the establishment of a polymorphism. However, this polymorphism was easily destabilized by further mutation accumulation, which was often asymmetric, disrupting the quasi-equilibrium state. Mechanisms that accelerated degeneration tended to amplify asymmetric mutation accumulation between the supergene arrangements and vice-versa. As the evolution of balanced lethal systems requires symmetric degeneration of both arrangements, this leaves only restricted conditions for their evolution, namely small population sizes and low rates of gene conversion. The dichotomy between the persistence of polymorphism and degeneration of supergene arrangements likely underlies the rarity of balanced lethal systems in nature. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.


Assuntos
Acúmulo de Mutações , Polimorfismo Genético , Fenótipo
9.
Philos Trans R Soc Lond B Biol Sci ; 377(1856): 20210192, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35694757

RESUMO

Supergenes are tightly linked sets of loci that are inherited together and control complex phenotypes. While classical supergenes-governing traits such as wing patterns in Heliconius butterflies or heterostyly in Primula-have been studied since the Modern Synthesis, we still understand very little about how they evolve and persist in nature. The genetic architecture of supergenes is a critical factor affecting their evolutionary fate, as it can change key parameters such as recombination rate and effective population size, potentially redirecting molecular evolution of the supergene in addition to the surrounding genomic region. To understand supergene evolution, we must link genomic architecture with evolutionary patterns and processes. This is now becoming possible with recent advances in sequencing technology and powerful forward computer simulations. The present theme issue brings together theoretical and empirical papers, as well as opinion and synthesis papers, which showcase the architectural diversity of supergenes and connect this to critical processes in supergene evolution, such as polymorphism maintenance and mutation accumulation. Here, we summarize those insights to highlight new ideas and methods that illuminate the path forward for the study of supergenes in nature. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.


Assuntos
Borboletas , Animais , Borboletas/genética , Evolução Molecular , Genes de Insetos , Genômica , Asas de Animais
10.
Science ; 375(6586): 1226-1227, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35298240

RESUMO

Selection in fruit flies leads to fast adaption to seasonal changes.


Assuntos
Aclimatação , Adaptação Fisiológica , Animais , Drosophila
11.
Annu Rev Entomol ; 67: 83-103, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34590891

RESUMO

An enormous amount of work has been done on aging in Drosophila melanogaster, a classical genetic and molecular model system, but also in numerous other insects. However, these two extensive bodies of work remain poorly integrated to date. Studies in Drosophila often explore genetic, developmental, physiological, and nutrition-related aspects of aging in the lab, while studies in other insects often explore ecological, social, and somatic aspects of aging in both lab and natural populations. Alongside exciting genomic and molecular research advances in aging in Drosophila, many new studies have also been published on aging in various other insects, including studies on aging in natural populations of diverse species. However, no broad synthesis of these largely separate bodies of work has been attempted. In this review, we endeavor to synthesize these two semi-independent literatures to facilitate collaboration and foster the exchange of ideas and research tools. While lab studies of Drosophila have illuminated many fundamental aspects of senescence, the stunning diversity of aging patterns among insects, especially in the context of their rich ecology, remains vastlyunderstudied. Coupled with field studies and novel, more easily applicable molecular methods, this represents a major opportunity for deepening our understanding of the biology of aging in insects and beyond.


Assuntos
Envelhecimento , Drosophila melanogaster , Insetos , Animais , Drosophila melanogaster/fisiologia , Insetos/fisiologia
12.
Evol Lett ; 5(6): 644-656, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34917403

RESUMO

Life-history theory posits that investment into reproduction might occur at the expense of investment into somatic maintenance, including immune function. If so, reduced or curtailed reproductive effort might be expected to increase immunity. In support of this notion, work in Caenorhabditis elegans has shown that worms lacking a germline exhibit improved immunity, but whether the antagonistic relation between germline proliferation and immunity also holds for other organisms is less well understood. Here, we report that transgenic ablation of germ cells in late development or early adulthood in Drosophila melanogaster causes elevated baseline expression and increased induction of Toll and Imd immune genes upon bacterial infection, as compared to fertile flies with an intact germline. We also identify immune genes whose expression after infection differs between fertile and germline-less flies in a manner that is conditional on their mating status. We conclude that germline activity strongly impedes the expression and inducibility of immune genes and that this physiological trade-off might be evolutionarily conserved.

13.
Virus Evol ; 7(1): veab031, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34408913

RESUMO

Drosophila melanogaster is an important model for antiviral immunity in arthropods, but very few DNA viruses have been described from the family Drosophilidae. This deficiency limits our opportunity to use natural host-pathogen combinations in experimental studies, and may bias our understanding of the Drosophila virome. Here, we report fourteen DNA viruses detected in a metagenomic analysis of 6668 pool-sequenced Drosophila, sampled from forty-seven European locations between 2014 and 2016. These include three new nudiviruses, a new and divergent entomopoxvirus, a virus related to Leptopilina boulardi filamentous virus, and a virus related to Musca domestica salivary gland hypertrophy virus. We also find an endogenous genomic copy of galbut virus, a double-stranded RNA partitivirus, segregating at very low frequency. Remarkably, we find that Drosophila Vesanto virus, a small DNA virus previously described as a bidnavirus, may be composed of up to twelve segments and thus represent a new lineage of segmented DNA viruses. Two of the DNA viruses, Drosophila Kallithea nudivirus and Drosophila Vesanto virus are relatively common, found in 2 per cent or more of wild flies. The others are rare, with many likely to be represented by a single infected fly. We find that virus prevalence in Europe reflects the prevalence seen in publicly available datasets, with Drosophila Kallithea nudivirus and Drosophila Vesanto virus the only ones commonly detectable in public data from wild-caught flies and large population cages, and the other viruses being rare or absent. These analyses suggest that DNA viruses are at lower prevalence than RNA viruses in D.melanogaster, and may be less likely to persist in laboratory cultures. Our findings go some way to redressing an earlier bias toward RNA virus studies in Drosophila, and lay the foundation needed to harness the power of Drosophila as a model system for the study of DNA viruses.

14.
Mol Ecol ; 30(16): 3896-3897, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34218481

RESUMO

Several recent publications have stated that epistatic fitness interactions cause the fixation of inversions that suppress recombination among the loci involved. Under this type of selection, however, the suppression of recombination in an inversion heterozygote can create a form of heterozygote advantage, which prevents the inversion from becoming fixed by selection. This process has been explicitly modelled by previous workers.


Assuntos
Epistasia Genética , Recombinação Genética , Inversão Cromossômica/genética , Heterozigoto , Humanos , Desequilíbrio de Ligação , Modelos Genéticos , Seleção Genética
15.
Elife ; 102021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34155971

RESUMO

To advance our understanding of adaptation to temporally varying selection pressures, we identified signatures of seasonal adaptation occurring in parallel among Drosophila melanogaster populations. Specifically, we estimated allele frequencies genome-wide from flies sampled early and late in the growing season from 20 widely dispersed populations. We identified parallel seasonal allele frequency shifts across North America and Europe, demonstrating that seasonal adaptation is a general phenomenon of temperate fly populations. Seasonally fluctuating polymorphisms are enriched in large chromosomal inversions, and we find a broad concordance between seasonal and spatial allele frequency change. The direction of allele frequency change at seasonally variable polymorphisms can be predicted by weather conditions in the weeks prior to sampling, linking the environment and the genomic response to selection. Our results suggest that fluctuating selection is an important evolutionary force affecting patterns of genetic variation in Drosophila.


Assuntos
Adaptação Biológica , Inversão Cromossômica , Drosophila melanogaster/fisiologia , Frequência do Gene , Polimorfismo Genético , Animais , Áustria , Drosophila melanogaster/genética , Masculino , Ontário , Estações do Ano , Seleção Genética , Espanha , Ucrânia , Estados Unidos
16.
Genome Biol Evol ; 13(6)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33944936

RESUMO

Evolutionary theories of ageing predict a reduction in selection efficiency with age, a so-called "selection shadow," due to extrinsic mortality decreasing effective population size with age. Classic symptoms of ageing include a deterioration in transcriptional regulation and protein homeostasis. Understanding how ant queens defy the trade-off between fecundity and lifespan remains a major challenge for the evolutionary theory of ageing. It has often been discussed that the low extrinsic mortality of ant queens, that are generally well protected within the nest by workers and soldiers, should reduce the selection shadow acting on old queens. We tested this by comparing strength of selection acting on genes upregulated in young and old queens of the ant, Cardiocondyla obscurior. In support of a reduced selection shadow, we find old-biased genes to be under strong purifying selection. We also analyzed a gene coexpression network (GCN) with the aim to detect signs of ageing in the form of deteriorating regulation and proteostasis. We find no evidence for ageing. In fact, we detect higher connectivity in old queens indicating increased transcriptional regulation with age. Within the GCN, we discover five highly correlated modules that are upregulated with age. These old-biased modules regulate several antiageing mechanisms such as maintenance of proteostasis, transcriptional regulation, and stress response. We observe stronger purifying selection on central hub genes of these old-biased modules compared with young-biased modules. These results indicate a lack of transcriptional ageing in old C. obscurior queens, possibly facilitated by strong selection at old age and well-regulated antiageing mechanisms.


Assuntos
Formigas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Longevidade/genética , Seleção Genética , Animais , Formigas/genética , Evolução Biológica , Feminino
17.
Mol Ecol ; 30(12): 2817-2830, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33914989

RESUMO

The insulin/insulin-like growth factor signalling pathway has been hypothesized as a major determinant of life-history profiles that vary adaptively in natural populations. In Drosophila melanogaster, multiple components of this pathway vary predictably with latitude; this includes foxo, a conserved gene that regulates insulin signalling and has pleiotropic effects on a variety of fitness-associated traits. We hypothesized that allelic variation at foxo contributes to genetic variance for size-related traits that vary adaptively with latitude. We first examined patterns of variation among natural populations along a latitudinal transect in the eastern United States and show that thorax length, wing area, wing loading, and starvation tolerance exhibit significant latitudinal clines for both males and females but that development time does not vary predictably with latitude. We then generated recombinant outbred populations and show that naturally occurring allelic variation at foxo, which exhibits stronger clinality than expected, is associated with the same traits that vary with latitude in the natural populations. Our results suggest that allelic variation at foxo contributes to adaptive patterns of life-history variation in natural populations of this genetic model.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Aclimatação , Adaptação Fisiológica/genética , Alelos , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Feminino , Fatores de Transcrição Forkhead/genética , Variação Genética , Masculino , Polimorfismo Genético , Estados Unidos
18.
Philos Trans R Soc Lond B Biol Sci ; 376(1823): 20190729, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33678014

RESUMO

Between the 1930s and 1960s, evolutionary geneticists worked out the basic principles of why organisms age. Despite much progress in the evolutionary biology of ageing since that time, however, many puzzles remain. The perhaps most fundamental of these is the question of which organisms should exhibit senescence and which should not (or which should age rapidly and which should not). The evolutionary origin of ageing from a non-senescent state has been conceptually framed, for example, in terms of the separation between germ-line and soma, the distinction between parents and their offspring, and-in unicellular organisms-the unequal distribution of cellular damage at cell division. These ideas seem to be closely related to the concept of 'division of labour' between reproduction and somatic maintenance. Here, we review these concepts and develop a toy model to explore the importance of such asymmetries for the evolution of senescence. We apply our model to the simplest case of a multicellular system: an organism consisting of two totipotent cells. Notably, we find that in organisms which reproduce symmetrically and partition damage equally, senescence is still able to evolve, contrary to previous claims. Our results might have some bearing on understanding the origin of the germ-line-soma separation and the evolution of senescence in multicellular organisms and in colonial species consisting of multiple types of individuals, such as, for example, eusocial insects with their different castes. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'


Assuntos
Envelhecimento , Evolução Biológica , Diferenciação Celular , Divisão Celular , Insetos/fisiologia , Animais , Células Germinativas/fisiologia , Modelos Biológicos
19.
Philos Trans R Soc Lond B Biol Sci ; 376(1823): 20190728, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33678016

RESUMO

The exceptional longevity of social insect queens despite their lifelong high fecundity remains poorly understood in ageing biology. To gain insights into the mechanisms that might underlie ageing in social insects, we compared gene expression patterns between young and old castes (both queens and workers) across different lineages of social insects (two termite, two bee and two ant species). After global analyses, we paid particular attention to genes of the insulin/insulin-like growth factor 1 signalling (IIS)/target of rapamycin (TOR)/juvenile hormone (JH) network, which is well known to regulate lifespan and the trade-off between reproduction and somatic maintenance in solitary insects. Our results reveal a major role of the downstream components and target genes of this network (e.g. JH signalling, vitellogenins, major royal jelly proteins and immune genes) in affecting ageing and the caste-specific physiology of social insects, but an apparently lesser role of the upstream IIS/TOR signalling components. Together with a growing appreciation of the importance of such downstream targets, this leads us to propose the TI-J-LiFe (TOR/IIS-JH-Lifespan and Fecundity) network as a conceptual framework for understanding the mechanisms of ageing and fecundity in social insects and beyond. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'


Assuntos
Envelhecimento/genética , Formigas/fisiologia , Abelhas/fisiologia , Fertilidade/genética , Isópteros/fisiologia , Transcriptoma/fisiologia , Animais , Formigas/genética , Abelhas/genética , Perfilação da Expressão Gênica , Isópteros/genética , Especificidade da Espécie
20.
Mol Biol Evol ; 37(9): 2661-2678, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32413142

RESUMO

Genetic variation is the fuel of evolution, with standing genetic variation especially important for short-term evolution and local adaptation. To date, studies of spatiotemporal patterns of genetic variation in natural populations have been challenging, as comprehensive sampling is logistically difficult, and sequencing of entire populations costly. Here, we address these issues using a collaborative approach, sequencing 48 pooled population samples from 32 locations, and perform the first continent-wide genomic analysis of genetic variation in European Drosophila melanogaster. Our analyses uncover longitudinal population structure, provide evidence for continent-wide selective sweeps, identify candidate genes for local climate adaptation, and document clines in chromosomal inversion and transposable element frequencies. We also characterize variation among populations in the composition of the fly microbiome, and identify five new DNA viruses in our samples.


Assuntos
Drosophila melanogaster/genética , Genoma de Inseto , Variação Estrutural do Genoma , Microbiota , Seleção Genética , Aclimatação/genética , Altitude , Animais , Vírus de DNA , Drosophila melanogaster/virologia , Europa (Continente) , Genoma Mitocondrial , Haplótipos , Vírus de Insetos , Masculino , Filogeografia , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...