Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(12): e2306993, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38233212

RESUMO

Passivating contactsin heterojunction (HJ) solar cells have shown great potential in reducing recombination losses, and thereby achieving high power conversion efficiencies in photovoltaic devices. In this direction, carbon nanomaterials have emerged as a promising option for carbon/silicon (C/Si) HJsolar cells due to their tunable band structure, wide spectral absorption, high carrier mobility, and properties such as multiple exciton generation. However, the current limitations in efficiency and active area have hindered the industrialization of these devices. In this review, they examine the progress made in overcoming these constraints and discuss the prospect of achieving high power conversion efficiency (PCE) C/Si HJ devices. A C/Si HJ solar cell is also designed by introducing an innovative interface passivation strategy to further boost the PCE and accelerate the large area preparationof C/Si devices. The physical principle, device design scheme, and performanceoptimization approaches of this passivated C/Si HJ cells are discussed. Additionally, they outline potential future pathways and directions for C/Si HJ devices, including a reduction in their cost to manufacture and their incorporation intotandem solar cells. As such, this review aims to facilitate a deeperunderstanding of C/Si HJ solar cells and provide guidance for their further development.

2.
Nat Commun ; 15(1): 706, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267487

RESUMO

Inorganic pyrophosphate is a key molecule in many biological processes from DNA synthesis to cell metabolism. Here we introduce sp3-functionalized (6,5) single-walled carbon nanotubes (SWNTs) with red-shifted defect emission as near-infrared luminescent probes for the optical detection and quantification of inorganic pyrophosphate. The sensing scheme is based on the immobilization of Cu2+ ions on the SWNT surface promoted by coordination to covalently attached aryl alkyne groups and a triazole complex. The presence of Cu2+ ions on the SWNT surface causes fluorescence quenching via photoinduced electron transfer, which is reversed by copper-complexing analytes such as pyrophosphate. The differences in the fluorescence response of sp3-defect to pristine nanotube emission enables reproducible ratiometric measurements in a wide concentration window. Biocompatible, phospholipid-polyethylene glycol-coated SWNTs with such sp3 defects are employed for the detection of pyrophosphate in cell lysate and for monitoring the progress of DNA synthesis in a polymerase chain reaction. This robust ratiometric and near-infrared luminescent probe for pyrophosphate may serve as a starting point for the rational design of nanotube-based biosensors.


Assuntos
Difosfatos , Nanotubos de Carbono , Cobre , Corantes , DNA
3.
ACS Nano ; 17(16): 15989-15998, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37527201

RESUMO

Small perturbations in the structure of materials significantly affect their properties. One example is single wall carbon nanotubes (SWCNTs), which exhibit chirality-dependent near-infrared (NIR) fluorescence. They can be modified with quantum defects through the reaction with diazonium salts, and the number or distribution of these defects determines their photophysics. However, the presence of multiple chiralities in typical SWCNT samples complicates the identification of defect-related emission features. Here, we show that quantum defects do not affect aqueous two-phase extraction (ATPE) of different SWCNT chiralities into different phases, which suggests low numbers of defects. For bulk samples, the bandgap emission (E11) of monochiral (6,5)-SWCNTs decreases, and the defect-related emission feature (E11*) increases with diazonium salt concentration and represents a proxy for the defect number. The high purity of monochiral samples from ATPE allows us to image NIR fluorescence contributions (E11 = 986 nm and E11* = 1140 nm) on the single SWCNT level. Interestingly, we observe a stochastic (Poisson) distribution of quantum defects. SWCNTs have most likely one to three defects (for low to high (bulk) quantum defect densities). Additionally, we verify this number by following single reaction events that appear as discrete steps in the temporal fluorescence traces. We thereby count single reactions via NIR imaging and demonstrate that stochasticity plays a crucial role in the optical properties of SWCNTs. These results show that there can be a large discrepancy between ensemble and single particle experiments/properties of nanomaterials.

4.
Research (Wash D C) ; 6: 0084, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37011251

RESUMO

Diverse defects in copper indium gallium diselenide solar cells cause nonradiative recombination losses and impair device performance. Here, an organic passivation scheme for surface and grain boundary defects is reported, which employs an organic passivation agent to infiltrate the copper indium gallium diselenide thin films. A transparent conductive passivating (TCP) film is then developed by incorporating metal nanowires into the organic polymer and used in solar cells. The TCP films have a transmittance of more than 90% in the visible and nearinfrared spectra and a sheet resistance of ~10.5 Ω/sq. This leads to improvements in the open-circuit voltage and the efficiency of the organic passivated solar cells compared with control cells and paves the way for novel approaches to copper indium gallium diselenide defect passivation and possibly other compound solar cells.

5.
Small ; 19(19): e2207684, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36775908

RESUMO

Dead-end filtration is a facile method to globally align single wall carbon nanotubes (SWCNTs) in large area films with a 2D order parameter, S2D , approaching unity. Uniaxial alignment has been achieved using pristine and hot-embossed membranes but more sophisticated geometries have yet to be investigated. In this work, three different patterns with radial symmetry and an area of 3.8 cm2 are created. Two of these patterns are replicated by the filtered SWCNTs and S2D values of ≈0.85 are obtained. Each of the radially aligned SWCNT films is characterized by scanning cross-polarized microscopy in reflectance and laser imaging in transmittance with linear, radial, and azimuthal polarized light fields. The former is used to define a novel indicator akin to the 2D order parameter using Malu's law, yielding 0.82 for the respective film. The films are then transferred to a flexible printed circuit board and terminal two-probe electrical measurements are conducted to explore the potential of those new alignment geometries.

6.
Small ; 19(10): e2205848, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36564362

RESUMO

The innate inverse Auger effect within bulk silicon can result in multiple carrier generation. Observation of this effect is reliant upon low high-energy photon reflectance and high-quality surface passivation. In the photovoltaics industry, metal-assisted chemical etching (MACE) to afford black silicon (b-Si) can provide a low high-energy photon reflectance. However, an industrially feasible and cheaper technology to conformally passivate the outer-shell defects of these nanowires is currently lacking. Here, a technology is introduced to infiltrate black silicon nanopores with a simple and vacuum-free organic passivation layer that affords millisecond-level minority carrier lifetimes and matches perfectly with existing solution-based processing of the MACE black silicon. Advancements such as the demonstration of an excellent passivation effect whilst also being low reflectance provide a new technological route for inverse Auger multiple carrier generation and an industrially feasible technical scheme for the development of the MACE b-Si solar cells.

7.
Small ; 19(10): e2206774, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36549899

RESUMO

Dead-end filtration has proven to effectively prepare macroscopically (3.8 cm2 ) aligned thin films from solutionbased single-wall carbon nanotubes (SWCNTs). However, to make this technique broadly applicable, the role of SWCNT length and diameter must be understood. To date, most groups report the alignment of unsorted, large diameter (≈1.4 nm) SWCNTs, but systematic studies on their small diameter are rare (≈0.78 nm). In this work, films with an area of A = 3.81 cm2 and a thickness of ≈40 nm are prepared from length-sorted fractions comprising of small and large diameter SWCNTs, respectively. The alignment is characterized by cross-polarized microscopy, scanning electron microscopy, absorption and Raman spectroscopy. For the longest fractions (Lavg = 952 nm ± 431 nm, Δ = 1.58 and Lavg = 667 nm ± 246 nm, Δ = 1.55), the 2D order parameter, S2D, values of ≈0.6 and ≈0.76 are reported for the small and large diameter SWCNTs over an area of A = 625 µm2 , respectively. A comparison of Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory calculations with the aligned domain size is then used to propose a law identifying the required length of a carbon nanotube with a given diameter and zeta potential.

8.
ACS Nano ; 16(10): 16038-16053, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36167339

RESUMO

The coaxial stacking of two single-wall carbon nanotubes (SWCNTs) into a double-wall carbon nanotube (DWCNT), forming a so-called one-dimensional van der Waals structure, leads to synergetic effects that dramatically affect the optical and electronic properties of both layers. In this work, we explore these effects in purified DWCNT samples by combining absorption, wavelength-dependent infrared fluorescence-excitation (PLE), and wavelength-dependent resonant Raman scattering (RRS) spectroscopy. Purified DWCNTs are obtained by careful solubilization that strictly avoids ultrasonication or by electronic-type sorting, both followed by a density gradient ultracentrifugation to remove unwanted SWCNTs that could obscure the DWCNT characterization. Chirality-dependent shifts of the radial breathing mode vibrational frequencies and transition energies of the inner and outer DWCNT walls with respect to their SWCNT analogues are determined by advanced two-dimensional fitting of RRS and PLE data of DWCNT and their reference SWCNT samples. This exhaustive data set verifies that fluorescence from the inner DWCNT walls of well-purified samples is severely quenched through efficient energy transfer from the inner to the outer DWCNT walls. Combined analysis of the PLE and RRS results further reveals that this transfer is dependent on the inner and outer wall chirality, and we identify the specific combinations dominant in our DWCNT samples. These obtained results demonstrate the necessity and value of a combined structural characterization approach including PLE and RRS spectroscopy for bulk DWCNT samples.

9.
Nanoscale ; 14(23): 8385-8397, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35635153

RESUMO

The filling of single-wall carbon nanotubes (SWCNTs) with dye molecules has become a novel path to add new functionalities through the mutual interaction of confined dyes and host SWCNTs. In particular cases, the encapsulated dye molecules form strongly interacting molecular arrays and these result in severely altered optical properties of the dye molecules. Here, we present the encapsulation of a squaraine dye inside semiconducting chirality-sorted SWCNTs with diameters ranging from ∼1.15 nm, in which the dye molecules can only be encapsulated in a single-file molecular arrangement, up to ∼1.5 nm, in which two or three molecular files can fit side-by-side. Through the chirality-selective observation of energy transfer from the dye molecules to the surrounding SWCNTs, we find that the absorption wavelength of the dye follows a peculiar SWCNT diameter dependence, originating from the specific stacking of the dye inside the host SWCNTs. Corroborated by a theoretical model, we find that for each SWCNT diameter, the dye molecules adopt a close packing geometry, resulting in tunable optical properties of the hybrid when selecting a specific SWCNT chirality.

10.
J Phys Chem Lett ; 13(16): 3542-3548, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35420437

RESUMO

The functionalization of semiconducting single-wall carbon nanotubes (SWCNTs) with luminescent sp3 defects creates red-shifted emission features in the near-infrared and boosts their photoluminescence quantum yields (PLQYs). While multiple synthetic routes for the selective introduction of sp3 defects have been developed, a convenient metric to precisely quantify the number of defects on a SWCNT lattice is not available. Here, we present a direct and simple quantification protocol based on a linear correlation of the integrated Raman D/G+ signal ratios and defect densities as extracted from PLQY measurements. Corroborated by a statistical analysis of single-nanotube emission spectra at cryogenic temperature, this method enables the quantitative evaluation of sp3 defect densities in (6,5) SWCNTs with an error of ±3 defects per micrometer and the determination of oscillator strengths for different defect types. The developed protocol requires only standard Raman spectroscopy and is independent of the defect configuration, dispersion solvent, and nanotube length.

11.
Angew Chem Int Ed Engl ; 61(2): e202108373, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34608727

RESUMO

Plants use secondary metabolites such as polyphenols for chemical defense against pathogens and herbivores. Despite their importance in plant pathogen interactions and tolerance to diseases, it remains challenging to detect polyphenols in complex plant tissues. Here, we create molecular sensors for plant polyphenol imaging that are based on near-infrared (NIR) fluorescent single-wall carbon nanotubes (SWCNTs). We identified polyethylene glycol-phospholipids that render (6,5)-SWCNTs sensitive (Kd =90 nM) to plant polyphenols (tannins, flavonoids, …), which red-shift (up to 20 nm) and quench their emission (ca. 1000 nm). These sensors report changes in total polyphenol level after herbivore or pathogen challenge in crop plant systems (Soybean Glycine max) and leaf tissue extracts (Tococa spp.). We furthermore demonstrate remote chemical imaging of pathogen-induced polyphenol release from roots of soybean seedlings over the time course of 24 h. This approach allows in situ visualization and understanding of the chemical plant defense in real time and paves the way for plant phenotyping for optimized polyphenol secretion.


Assuntos
Polifenóis
12.
Adv Sci (Weinh) ; 8(20): e2102027, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34473427

RESUMO

The organic passivated carbon nanotube (CNT)/silicon (Si) solar cell is a new type of low-cost, high-efficiency solar cell, with challenges concerning the stability of the organic layer used for passivation. In this work, the stability of the organic layer is studied with respect to the internal and external (humidity) water content and additionally long-term stability for low moisture environments. It is found that the organic passivated CNT/Si complex interface is not stable, despite both the organic passivation layer and CNTs being stable on their own and is due to the CNTs providing an additional path for water molecules to the interface. With the use of a simple encapsulation, a record power conversion efficiency of 22% is achieved and a stable photovoltaic performance is demonstrated. This work provides a new direction for the development of high-performance/low-cost photovoltaics in the future and will stimulate the use of nanotubes materials for solar cells applications.

13.
Nanoscale ; 13(26): 11439-11445, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34160536

RESUMO

The 1D confinement of silicon in the form of a nanowire revives its newness with the emergence of new optical and electronic properties. However, the development of a production process for silicon nanowires (SiNWs) having a high quality crystalline core and exhibiting good stability in solution with effective outer-shell defect passivation is still a challenge. In this work, SiNWs are prepared from a silicon wafer using solution processing steps, and importantly outer-shell-defect passivation is achieved by in situ grafting of organic molecules based on thin films. Defect passivation and the high quality of the SiNWs are confirmed with thin films on glass and flexible plastic substrates. A dramatic enhancement in both the fluorescence lifetime and infrared photoluminescence is observed. The in situ organic passivation of SiNWs has potential application in all low-dimensional silicon devices including infrared detectors, solar cells and lithium-ion battery anodes.

14.
J Phys Chem C Nanomater Interfaces ; 125(15): 8125-8136, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-34055124

RESUMO

As narrow optical bandgap materials, semiconducting single-walled carbon nanotubes (SWCNTs) are rarely regarded as charge donors in photoinduced charge-transfer (PCT) reactions. However, the unique band structure and unusual exciton dynamics of SWCNTs add more possibilities to the classical PCT mechanism. In this work, we demonstrate PCT from photoexcited semiconducting (6,5) SWCNTs to a wide-bandgap wrapping poly-[(9,9-dioctylfluorenyl-2,7-diyl)-alt-(6,6')-(2,2'-bipyridine)] (PFO-BPy) via femtosecond transient absorption spectroscopy. By monitoring the spectral dynamics of the SWCNT polaron, we show that charge transfer from photoexcited SWCNTs to PFO-BPy can be driven not only by the energetically favorable E33 transition but also by the energetically unfavorable E22 excitation under high pump fluence. This unusual PCT from narrow-bandgap SWCNTs toward a wide-bandgap polymer originates from the up-converted high-energy excitonic state (E33 or higher) that is promoted by the Auger recombination of excitons and charge carriers in SWCNTs. These insights provide new pathways for charge separation in SWCNT-based photodetectors and photovoltaic cells.

15.
Anal Chem ; 93(16): 6446-6455, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33830740

RESUMO

Semiconducting single-wall carbon nanotubes (SWCNTs) fluoresce in the near-infrared (NIR) region, and the emission wavelength depends on their chirality (n,m). Interactions with the environment affect the fluorescence and can be tailored by functionalizing SWCNTs with biopolymers such as DNA, which is the basis for fluorescent biosensors. So far, such biosensors have been mainly assembled from mixtures of SWCNT chiralities with large spectral overlap, which affects sensitivity as well as selectivity and prevents multiplexed sensing. The main challenge to gain chirality-pure sensors has been to combine approaches to isolate specific SWCNTs and generic (bio)functionalization approaches. Here, we created chirality-pure SWCNT-based NIR biosensors for important analytes such as neurotransmitters and investigated the effect of SWCNT chirality/handedness as well as long-term stability and sensitivity. For this purpose, we used aqueous two-phase extraction (ATPE) to gain chirality-pure (6,5)-, (7,5)-, (9,4)-, and (7,6)-SWCNTs (emission at ∼990, 1040, 1115, and 1130 nm, respectively). An exchange of the surfactant sodium deoxycholate (DOC) to specific single-stranded (ss)DNA sequences yielded monochiral sensors for small analytes (dopamine, riboflavin, ascorbic acid, pH). DOC residues impaired sensitivity, and therefore substantial removal was necessary. The assembled monochiral (6,5)-SWCNTs were up to 10 times brighter than their nonpurified counterparts, and the ssDNA sequence determined the absolute fluorescence intensity as well as colloidal (long-term) stability and selectivity for the analytes. (GT)40-(6,5)-SWCNTs displayed the maximum fluorescence response to the neurotransmitter dopamine (+140%, Kd = 1.9 × 10-7 M) and a long-term stability of >14 days. The specific ssDNA sequences imparted selectivity to the analytes mostly independent of SWCNT chirality and handedness of (±) (6,5)-SWCNTs, which allowed a predictable design. Finally, multiple monochiral/single-color SWCNTs were combined to achieve ratiometric/multiplexed sensing of the important analytes dopamine, riboflavin, H2O2, and pH. In summary, we demonstrated the assembly, characteristics, and potential of monochiral (single-color) SWCNTs for NIR fluorescence sensing applications.

16.
ACS Nano ; 14(3): 2709-2717, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-31920075

RESUMO

Single-walled carbon nanotubes as emerging quantum-light sources may fill a technological gap in silicon photonics due to their potential use as near-infrared, electrically driven, classical or nonclassical emitters. Unlike in photoluminescence, where nanotubes are excited with light, electrical excitation of single tubes is challenging and heavily influenced by device fabrication, architecture, and biasing conditions. Here we present electroluminescence spectroscopy data of ultra-short-channel devices made from (9,8) carbon nanotubes emitting in the telecom band. Emissions are stable under current biasing, and no enhanced suppression is observed down to 10 nm gap size. Low-temperature electroluminescence spectroscopy data also reported exhibit cold emission and line widths down to 2 meV at 4 K. Electroluminescence excitation maps give evidence that carrier recombination is the mechanism for light generation in short channels. Excitonic and trionic emissions can be switched on and off by gate voltage, and corresponding emission efficiency maps were compiled. Insights are gained into the influence of acoustic phonons on the line width, absence of intensity saturation and exciton-exciton annihilation, environmental effects such as dielectric screening and strain on the emission wavelength, and conditions to suppress hysteresis and establish optimum operation conditions.

17.
ACS Nano ; 14(1): 948-963, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31742998

RESUMO

The enantiomer-level isolation of single-walled carbon nanotubes (SWCNTs) in high concentration and with high purity for nanotubes greater than 1.1 nm in diameter is demonstrated using a two-stage aqueous two-phase extraction (ATPE) technique. In total, five different nanotube species of ∼1.41 nm diameter are isolated, including both metallics and semiconductors. We characterize these populations by absorbance spectroscopy, circular dichroism spectroscopy, resonance Raman spectroscopy, and photoluminescence mapping, revealing and substantiating mod-dependent optical dependencies. Using knowledge of the competitive adsorption of surfactants to the SWCNTs that controls partitioning within the ATPE separation, we describe an advanced acid addition methodology that enables the fine control of the separation of these select nanotubes. Furthermore, we show that endohedral filling is a previously unrecognized but important factor to ensure a homogeneous starting material and further enhance the separation yield, with the best results for alkane-filled SWCNTs, followed by empty SWCNTs, with the intrinsic inhomogeneity of water-filled SWCNTs causing them to be worse for separations. Lastly, we demonstrate the potential use of these nanotubes in field-effect transistors.

18.
ACS Nano ; 13(2): 2567-2578, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30673278

RESUMO

An aqueous two-phase extraction (ATPE) technique capable of separating small-diameter single-walled carbon nanotubes in one, two, or at the most three steps is presented. Separation is performed in the well-studied two-phase system containing polyethylene glycol and dextran, but it is achieved without changing the global concentration or ratio of cosurfactants. Instead, the technique is reliant upon the different surfactant shell around each nanotube diameter at a fixed surfactant concentration. The methodology to obtain a single set of surfactant conditions is provided, and strategies to optimize these for other diameter regimes are discussed. In total, 11 different chiralities in the diameter range 0.69-0.91 nm are separated. These include semiconducting and both armchair and nonarmchair metallic nanotube species. Titration of cosurfactant suspensions reveal separation to be driven by the pH of the suspension with each ( n, m) species partitioning at a fixed pH. This allows for an ( n, m) separation approach to be presented that is as simple as pipetting known volumes of acid into the ATPE system.

19.
Chemistry ; 24(39): 9799-9806, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29750382

RESUMO

Applications of single-walled carbon nanotubes (SWCNTs) are hampered by the mixtures of metallic and semiconducting SWCNTs that are present in commercial samples. Separation of SWCNTs according to electronic type is therefore extremely important. Recently, the selective interaction between the conjugated polymer, poly(9,9-di-n-dodecyl-fluorenyl-2,7-diyl) and semiconducting SWCNTs has been reported. However, the mechanism responsible for this selectivity is poorly understood. To determine whether this polymer is only selective for semiconducting SWCNTs, we exposed it to mixtures of metallic and semiconducting SWCNTs in different ratios. We found that the polymer is indeed selective for semiconducting SWCNTs in toluene, but only when the starting ratio is below 67:33 metallic:semiconducting. When the starting ratio is increased to 67:33 or higher, the amount of metallic SWCNTs dispersed dramatically increases. If the solvent is changed to THF, the threshold ratio at which metallic SWCNTs begin to be dispersed is much lower. This indicates that the polymer exhibits a preference for interaction with semiconducting SWCNTs, but is not precluded from interaction with metallic SWCNTs if exposed to a high enough concentration.

20.
Nanoscale ; 9(32): 11640-11646, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28770923

RESUMO

Ultrahigh purity semiconducting single-walled carbon nanotubes (S-SWCNTs) are required for high-performance transistors. Aqueous two-phase (ATP) separation is an attractive method to obtain such SWCNTs due to its simplicity and scalability. This work targeted two questions; namely what is the upper limit of S-SWCNT purity that can be achieved by multiple cycles of ATP separation from the most commonly used polyethylene glycol and dextran system and how accurately can commonly used methods characterize the improvement in purity? SWCNT purity in nanotube dispersions obtained by multi-cycle ATP separation (2, 4, 6 and 8 cycles) was evaluated by three methods, including UV-vis-NIR absorption spectroscopy analysis, performance of thin-film field effect transistors (FETs) prepared by drop casting and short-channel FET devices prepared by dielectrophoresis deposition. Absorption spectroscopic analysis and the performance of the thin-film FET devices can hardly differentiate metallic SWCNT residues in the dispersions obtained after 4 cycles with the purity above 99.5%, and the short channel FET devices prepared by dielectrophoresis deposition are more sensitive towards tiny metallic SWCNT residues. A new method was also demonstrated to visualize the minor metallic content in the nanotube suspension using voltage contrast imaging in a scanning electron microscope, which enables rapid screening of many devices and the accurate obtainment of metallic content without performing a large number of individual transconductance measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...