Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-517338

RESUMO

BackgroundCOVID-19 (coronavirus disease 2019) is a disease caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), affecting millions of people worldwide, with a high rate of deaths. The present study aims to evaluate ultrasound (US) as a physical method for virus inactivation. Materials and methodsThe US-transductor was exposed to the SARS-CoV-2 viral solution for 30 minutes. Vero-E6 cells were infected with medium exposure or not with the US, using 3-12, 5-10, or 6-18MHz as frequencies applied. We performed confocal microscopy to determine virus infection and replicative process. Moreover, we detected the virus particles with a titration assay. ResultsWe observed an effective infection of SARS-CoV-2 Wuhan, Delta, and Gamma strains in comparison with mock, an uninfected experimental group. The US treatment was able to inhibit the Wuhan strain in all applied frequencies. Interestingly, 3-12 and 6-18MHz did not inhibit SARS-CoV-2 delta and gamma variants infection, on the other hand, 5-10MHz was able to abrogate infection and replication in all experimental conditions. ConclusionsThese results show that SARS-CoV-2 is susceptible to US exposure at a specific frequency 5-10MHz and could be a novel tool for reducing the incidence of SARS-CoV-2 infection.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-498624

RESUMO

Patients with severe COVID-19 develop acute respiratory distress syndrome (ARDS) that may progress to cytokine storm syndrome, organ dysfunction, and death. Considering that complement component 5a (C5a), through its cellular receptor C5aR1, has potent proinflammatory actions, and plays immunopathological roles in inflammatory diseases, we investigated whether C5a/C5aR1 pathway could be involved in COVID-19 pathophysiology. C5a/C5aR1 signaling increased locally in the lung, especially in neutrophils of critically ill COVID-19 patients compared to patients with influenza infection, as well as in the lung tissue of K18-hACE2 Tg mice (Tg mice) infected with SARS-CoV-2. Genetic and pharmacological inhibition of C5aR1 signaling ameliorated lung immunopathology in Tg-infected mice. Mechanistically, we found that C5aR1 signaling drives neutrophil extracellular trap (NET)s-dependent immunopathology. These data confirm the immunopathological role of C5a/C5aR1 signaling in COVID-19 and indicate that antagonist of C5aR1 could be useful for COVID-19 treatment.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-489676

RESUMO

COVID-19 is characterized by severe acute lung injury, which is associated with neutrophils infiltration and release of neutrophil extracellular traps (NETs). COVID-19 treatment options are scarce. Previous work has shown an increase in NETs release in the lung and plasma of COVID-19 patients suggesting that drugs that prevent NETs formation or release could be potential therapeutic approaches for COVID-19 treatment. Here, we report the efficacy of NET-degrading DNase I treatment in a murine model of COVID-19. DNase I decreased detectable levels of NETs, improved clinical disease, and reduced lung, heart, and kidney injuries in SARS-CoV-2-infected K18-hACE2 mice. Furthermore, our findings indicate a potential deleterious role for NETs lung tissue in vivo and lung epithelial (A549) cells in vitro, which might explain part of the pathophysiology of severe COVID-19. This deleterious effect was diminished by the treatment with DNase I. Together, our results support the role of NETs in COVID-19 immunopathology and highlight NETs disruption pharmacological approaches as a potential strategy to ameliorate COVID-19 clinical outcomes.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22269768

RESUMO

The release of neutrophil extracellular traps (NETs) is associated with inflammation, coagulopathy, and organ damage found in severe cases of COVID-19. However, the molecular mechanisms underlying the release of NETs in COVID-19 remain unclear. Using a single-cell transcriptome analysis we observed that the expression of GSDMD and inflammasome-related genes were increased in neutrophils from COVID-19 patients. Furthermore, high expression of GSDMD was found associated with NETs structures in the lung tissue of COVID-19 patients. The activation of GSDMD in neutrophils requires live SARS-CoV-2 and occurs after neutrophil infection via ACE2 receptors and serine protease TMPRSS2. In a mouse model of SARS-CoV-2 infection, the treatment with GSDMD inhibitor (disulfiram) reduced NETs release and organ damage. These results demonstrated that GSDMD-dependent NETosis plays a critical role in COVID-19 immunopathology, and suggests that GSDMD inhibitors, can be useful to COVID-19 treatment. In BriefHere, we showed that the activation of the Gasdermin-D (GSDMD) pathway in neutrophils controls NET release during COVID-19. The inhibition of GSDMD with disulfiram, abrogated NET formation reducing lung inflammation and tissue damage. These findings suggest GSDMD as a target for improving the COVID-19 therapy.

5.
Fernanda Crunfli; Victor Corasolla Carregari; Flavio Protasio Veras; Pedro Henrique Vendramini; Aline Gazzola Fragnani Valenca; Andre Saraiva Leao Marcelo Antunes; Carolina Brandao-Teles; Giuliana da Silva Zuccoli; Guilherme Reis-de-Oliveira; Licia C. Silva-Costa; Verônica Monteiro Saia-Cereda; Bradley Joseph Smith; Ana Campos Codo; Gabriela Fabiano de Souza; Stéfanie Primon Muraro; Pierina Lorencini Parise; Daniel A. Toledo-Teixeira; Icaro Maia Santos de Castro; Bruno Marcel Silva Melo; Glaucia M. Almeida; Egidi Mayara Silva Firmino; Isadora Marques Paiva; Bruna Manuella Souza Silva; Rafaela Mano Guimaraes; Niele D. Mendes; Raíssa Guimarães Ludwig; Gabriel Palermo Ruiz; Thiago Leite Knittel; Gustavo Gastão Davanzo; Jaqueline Aline Gerhardt; Patrícia Brito Rodrigues; Julia Forato; Mariene Ribeiro Amorim; Natália Brunetti Silva; Matheus Cavalheiro Martini; Maíra Nilson Benatti; Sabrina Batah; Li Siyuan; Rafael Batista João; Lucas Scardua Silva; Mateus Henrique Nogueira; ítalo Karmann Aventurato; Mariana Rabelo de Brito; Marina Koutsodontis Machado Alvim; José Roberto da Silva Junior; Lívia Liviane Damião; Maria Ercilia de Paula Castilho Stefano; Iêda Maria Pereira de Sousa; Elessandra Dias da Rocha; Solange Maria Gonçalves; Luiz Henrique Lopes da Silva; Vanessa Bettini; Brunno Machado de Campos; Guilherme Ludwig; Lucas Alves Tavares; Marjorie Cornejo Pontelli; Rosa Maria Mendes Viana; Ronaldo Martins; Andre S. Vieira; José Carlos Alves-Filho; Eurico de Arruda Neto; Guilherme Podolski-Gondim; Marcelo Volpon Santos; Luciano Neder; Fernando Cendes; Paulo Louzada-Junior; Rene Donizeti Oliveira; Fernando Q Cunha Sr.; André Damásio; Marco Aurélio Ramirez Vinolo; Carolina Demarchi Munhoz; Stevens K Rehen Sr.; Helder I Nakaya; Thais Mauad; Amaro Nunes Duarte-Neto; Luiz Fernando Ferraz da Silva; Marisa Dolhnikoff; Paulo Saldiva; Alessandro S Farias; Pedro Manoel M. Moraes-Vieira; Alexandre Todorovic Fabro; Adriano Sebollela; José Luiz Proença Módena; Clarissa Lin Yasuda; Marcelo A. Mori; Thiago Mattar Cunha; Daniel Martins-de-Souza.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20207464

RESUMO

Although increasing evidence confirms neuropsychiatric manifestations associated mainly with severe COVID-19 infection, the long-term neuropsychiatric dysfunction has been frequently observed after mild infection. Here we show the spectrum of the cerebral impact of SARS-CoV-2 infection ranging from long-term alterations in mildly infected individuals (orbitofrontal cortical atrophy, neurocognitive impairment, excessive fatigue and anxiety symptoms) to severe acute damage confirmed in brain tissue samples extracted from the orbitofrontal region (via endonasal trans-ethmoidal approach) from individuals who died of COVID-19. We used surface-based analyses of 3T MRI and identified orbitofrontal cortical atrophy in a group of 81 mildly infected patients (77% referred anosmia or dysgeusia during acute stage) compared to 145 healthy volunteers; this atrophy correlated with symptoms of anxiety and cognitive dysfunction. In an independent cohort of 26 individuals who died of COVID-19, we used histopathological signs of brain damage as a guide for possible SARS-CoV-2 brain infection, and found that among the 5 individuals who exhibited those signs, all of them had genetic material of the virus in the brain. Brain tissue samples from these 5 patients also exhibited foci of SARS-CoV-2 infection and replication, particularly in astrocytes. Supporting the hypothesis of astrocyte infection, neural stem cell-derived human astrocytes in vitro are susceptible to SARS-CoV-2 infection through a non-canonical mechanism that involves spike-NRP1 interaction. SARS-CoV-2-infected astrocytes manifested changes in energy metabolism and in key proteins and metabolites used to fuel neurons, as well as in the biogenesis of neurotransmitters. Moreover, human astrocyte infection elicits a secretory phenotype that reduces neuronal viability. Our data support the model in which SARS-CoV-2 reaches the brain, infects astrocytes and consequently leads to neuronal death or dysfunction. These deregulated processes are also likely to contribute to the structural and functional alterations seen in the brains of COVID-19 patients.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20125823

RESUMO

Severe COVID-19 patients develop acute respiratory distress syndrome that may progress to respiratory failure. These patients also develop cytokine storm syndrome, and organ dysfunctions, which is a clinical picture that resembles sepsis. Considering that neutrophil extracellular traps (NETs) have been described as an important factors of tissue damage in sepsis, we investigated whether NETs would be produced in COVID-19 patients and participate in the lung tissue damage. A cohort of 32 hospitalized patients with a confirmed diagnosis of COVID-19 and respective healthy controls were enrolled. NETs concentration was assessed by MPO-DNA PicoGreen assay or by confocal immunofluorescence. The cytotoxic effect of SARS-CoV-2-induced NETs was analyzed in human epithelial lung cells (A549 cells). The concentration of NETs was augmented in plasma and tracheal aspirate from COVID-19 patients and their neutrophils spontaneously released higher levels of NETs. NETs were also found in the lung tissue specimens from autopsies of COVID-19 patients. Notably, viable SARS-CoV-2 can directly induce in vitro release of NETs by healthy neutrophils in a PAD-4-dependent manner. Finally, NETs released by SARS-CoV-2-activated neutrophils promote lung epithelial cell death in vitro. These results unravel a possible detrimental role of NETs in the pathophysiology of COVID-19. Therefore, the inhibition of NETs represent a potential therapeutic target for COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...