Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Res ; 192: 1-14, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29144959

RESUMO

Innervation is a fundamental basis for function and survival of tissues. In the peripheral tissues, degenerative diseases create a neurotoxic metabolic milieu that either causes neurodegeneration or fails to sustain regenerative growth and reinnervation of injured/diseased tissues. Encapsulation of cells producing neurotrophic factors can augment axon growth and neuron survival; however, sustained innervation in vivo requires a combination of factors promoting axon growth and guidance pathway that are released in a tissue-specific context. Using novel encapsulation techniques and genetic tools, we manipulated retinoic acid-generating enzyme aldehyde dehydrogenase 1a1 (Aldh1a1) in adipocytes that are capable of promoting growth and innervation of white adipose tissue by sympathetic neurons. Aldh1a1-/- adipocytes secrete molecules that regulate axon guidance and markedly stimulate neurite outgrowth in vitro and in vivo. Based on studies with natural and synthetic RAR agonists and antagonists, gene microarray and nanostring arrays, we concluded that ephrin A5/ephrin A4 is a downstream pathway regulated by Aldh1a1. Encapsulation of Aldh1a1-/- adipocytes into alginate poly-L-lysine microcapsules induced functional innervation of adipose tissue in obese wild-type mice. We propose that encapsulated Aldh1a1-/- adipocytes could provide a therapeutic solution for the reinnervation of damaged tissues.


Assuntos
Adipócitos/fisiologia , Tecido Adiposo Branco/inervação , Aldeído Desidrogenase/fisiologia , Sistema Nervoso Simpático/fisiologia , Vitamina A/metabolismo , Células 3T3-L1 , Aldeído Desidrogenase/genética , Família Aldeído Desidrogenase 1 , Animais , Axônios/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neuritos/fisiologia , Receptor EphA4/fisiologia , Retinal Desidrogenase
2.
Blood Adv ; 1(24): 2147-2160, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29296862

RESUMO

Mutated mitogen-activated protein kinase (MAPK) pathway components promote tumor survival, proliferation, and immune evasion in solid tumors. MAPK mutations occur in hematologic cancers as well, but their role is less clear and few models are available to study this. We developed an in vivo model of disseminated BRAFV600E B-cell leukemia to determine the effects of this mutation on tumor development and immune evasion. Mice with B-cell-restricted BRAFV600E expression crossed with the Eµ-TCL1 model of chronic lymphocytic leukemia (CLL) developed leukemia significantly earlier (median, 4.9 vs 8.1 months; P < .001) and had significantly shorter lifespan (median, 7.3 vs 12.1 months; P < .001) versus BRAF wild-type counterparts. BRAFV600E expression did not affect B-cell proliferation but reduced spontaneous apoptosis. BRAFV600E-mutant leukemia produced greater T-cell effects, evidenced by exhaustion immunophenotype and CD44+ T-cell percentage, as well as increased expression of PD-L1 on CD11b+ cells. Results were confirmed in syngeneic mice engrafted with BRAFV600E leukemia cells. Furthermore, a BRAFV600E-expressing CLL cell line more strongly inhibited anti-CD3/CD28-induced T-cell proliferation, which was reversed by BRAFV600E inhibition. These results demonstrate the immune-suppressive impact of BRAFV600E in B-cell leukemias and introduce a new model to develop rational combination strategies targeting both tumor cells and tumor-mediated immune evasion.

3.
PLoS One ; 9(2): e89243, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24551241

RESUMO

Chronic carriage of Salmonella Typhi is mediated primarily through the formation of bacterial biofilms on the surface of cholesterol gallstones. Biofilms, by definition, involve the formation of a bacterial community encased within a protective macromolecular matrix. Previous work has demonstrated the composition of the biofilm matrix to be complex and highly variable in response to altered environmental conditions. Although known to play an important role in bacterial persistence in a variety of contexts, the Salmonella biofilm matrix remains largely uncharacterized under physiological conditions. Initial attempts to study matrix components and architecture of the biofilm matrix on gallstone surfaces were hindered by the auto-fluorescence of cholesterol. In this work we describe a method for sectioning and direct visualization of extracellular matrix components of the Salmonella biofilm on the surface of human cholesterol gallstones and provide a description of the major matrix components observed therein. Confocal micrographs revealed robust biofilm formation, characterized by abundant but highly heterogeneous expression of polysaccharides such as LPS, Vi and O-antigen capsule. CsgA was not observed in the biofilm matrix and flagellar expression was tightly restricted to the biofilm-cholesterol interface. Images also revealed the presence of preexisting Enterobacteriaceae encased within the structure of the gallstone. These results demonstrate the use and feasibility of this method while highlighting the importance of studying the native architecture of the gallstone biofilm. A better understanding of the contribution of individual matrix components to the overall biofilm structure will facilitate the development of more effective and specific methods to disrupt these bacterial communities.


Assuntos
Biofilmes , Matriz Extracelular/metabolismo , Cálculos Biliares/microbiologia , Salmonella/fisiologia , Adesinas Bacterianas/metabolismo , Biofilmes/crescimento & desenvolvimento , Flagelos/metabolismo , Imunofluorescência , Cálculos Biliares/patologia , Humanos , Indóis/metabolismo , Polissacarídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...