Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 7: 216, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31637240

RESUMO

The human Usher syndrome (USH) is a retinal ciliopathy, characterized by profound congenital deafness, variable vestibular dysfunction and pre-pubertal onset of retinitis pigmentosa. In the effected sensory cells, USH protein networks are assumed to function in ciliary transport processes. The USH1G protein SANS is a scaffold of the ciliary/periciliary USH protein network of photoreceptor cells. Moreover, SANS is associated with microtubules, the transport routes for protein delivery toward the cilium. To enlighten the role of SANS in ciliary transport processes, we aimed to identify transport related proteins associated with SANS. The intraflagellar transport (IFT) system is a conserved mechanism for bi-directional transport toward and through primary cilia. Thus, we tested the direct binding of SANS to IFT molecules, namely IFT20, IFT57, and IFT74 in 1:1 yeast-two-hybrid assay. The identified SANS-IFT interactions were validated in vitro via independent complementary interaction assays and in cells by applying membrane targeting assays. Quantitative immunofluorescence microscopy revealed the co-localization of SANS with IFT20, IFT52, and IFT57 particularly at ciliary base of wild type mouse photoreceptor cells. Analysis of photoreceptor cells of SANS knock out mice revealed the decrease of IFTs in the ciliary compartment indicating a role of SANS in the proper positioning of IFT-B molecules in primary cilia. Our study demonstrated direct binding of IFT complex B proteins IFT52 and IFT57 to the N-terminal ankyrin repeats and the central domain of SANS. Our data also indicate that pathologic mutations in the N-terminus of SANS lead to the loos of SANS binding to IFT-B molecules. Our findings provide direct evidence for a molecular link between the ciliary USH protein network and the IFT transport module in primary cilia.

2.
Cell Microbiol ; 19(5)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27892646

RESUMO

Having entered the mature human erythrocyte, the malaria parasite survives and propagates within a parasitophorous vacuole, a membrane-bound compartment separating the parasite from the host cell cytosol. The bounding membrane of this vacuole, referred to as the parasitophorous vacuolar membrane (PVM), contains parasite-encoded proteins, but how these membrane proteins are trafficked to the PVM remains unknown. Here, we have studied the trafficking of PfExp1 to the PVM. We find that trafficking of PfExp1 to the PVM is independent of the folding state of the protein and also continues unabated upon inactivation of the PVM translocon Plasmodium Translocon of Exported proteins (PTEX). Our data strongly suggest that the trafficking of membrane proteins to the PVM occurs by as yet unknown mechanism, potentially unique to Plasmodium.


Assuntos
Antígenos de Protozoários/metabolismo , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/metabolismo , Canais de Translocação SEC/metabolismo , Vacúolos/metabolismo , Células Cultivadas , Eritrócitos/parasitologia , Humanos , Dobramento de Proteína , Transporte Proteico , Vacúolos/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...