Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecology ; 104(4): e3713, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35476708

RESUMO

The Neotropical region hosts 4225 freshwater fish species, ranking first among the world's most diverse regions for freshwater fishes. Our NEOTROPICAL FRESHWATER FISHES data set is the first to produce a large-scale Neotropical freshwater fish inventory, covering the entire Neotropical region from Mexico and the Caribbean in the north to the southern limits in Argentina, Paraguay, Chile, and Uruguay. We compiled 185,787 distribution records, with unique georeferenced coordinates, for the 4225 species, represented by occurrence and abundance data. The number of species for the most numerous orders are as follows: Characiformes (1289), Siluriformes (1384), Cichliformes (354), Cyprinodontiformes (245), and Gymnotiformes (135). The most recorded species was the characid Astyanax fasciatus (4696 records). We registered 116,802 distribution records for native species, compared to 1802 distribution records for nonnative species. The main aim of the NEOTROPICAL FRESHWATER FISHES data set was to make these occurrence and abundance data accessible for international researchers to develop ecological and macroecological studies, from local to regional scales, with focal fish species, families, or orders. We anticipate that the NEOTROPICAL FRESHWATER FISHES data set will be valuable for studies on a wide range of ecological processes, such as trophic cascades, fishery pressure, the effects of habitat loss and fragmentation, and the impacts of species invasion and climate change. There are no copyright restrictions on the data, and please cite this data paper when using the data in publications.


Assuntos
Peixes , Água Doce , Animais , Ecossistema , México , Região do Caribe , Biodiversidade
2.
Oecologia ; 197(2): 485-500, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34480229

RESUMO

Historically, anthropogenic fixed nitrogen has been purposely increased to benefit food production and global development. One consequence of this increase has been to raise concentrations of nitrogen in aquatic ecosystems. To evaluate whether nitrogen pollution promotes changes in the estimates of niche space of fish communities, we examined 16 sites along a Brazilian river basin highly impacted by anthropogenic activities, especially discharge of domestic and industrial sewage from a region with more than 5 million inhabitants. We analysed the carbon (δ13C) and nitrogen (δ15N) isotope ratios of fish species and both autochthonous (periphyton) and allochthonous (course and fine particulate organic matter) basal food resources. To estimate the magnitude of nitrogen pollution, we measured the nitrate and ammonium concentrations at each site. Sampling was conducted in the dry and wet seasons to evaluate the influence of seasonality. Nitrogen pollution generally increased estimates of niche space, and seasonality influenced only the niche estimates of fish communities from polluted sites. In addition, isotopic analyses of nitrogen polluted sites yielded unrealistic estimates of trophic positioning (detritivores at the top of the food web). We conclude that changes in niche space estimates reflect both alterations in baseline isotopic values and differential trophic behaviour among fishes. Our study suggests that under conditions of high pollution, other factors appear to influence isotopic estimates of niche, such as isotopically distinct sources that have not been sampled, and/or differences in δ15N turnover rates between fish tissue and basal resources, creating isotopic baselines that are challenging to interpret.


Assuntos
Ecossistema , Nitrogênio , Animais , Isótopos de Carbono/análise , Peixes , Cadeia Alimentar , Isótopos de Nitrogênio/análise , Rios
3.
Oecologia ; 195(4): 1053-1069, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33738525

RESUMO

The ecological consequences of biological range extensions reflect the interplay between the functional characteristics of the newly arrived species and their recipient ecosystems. Teasing apart the relative contribution of each component is difficult because most colonization events are studied retrospectively, i.e., after a species became established and its consequences apparent. We conducted a prospective experiment to study the ecosystem consequences of a consumer introduction, using whole-stream metabolism as our integrator of ecosystem activity. In four Trinidadian streams, we extended the range of a native fish, the guppy (Poecilia reticulata), by introducing it over barrier waterfalls that historically excluded it from these upper reaches. To assess the context dependence of these range extensions, we thinned the riparian forest canopy on two of these streams to increase benthic algal biomass and productivity. Guppy's range extension into upper stream reaches significantly impacted stream metabolism but the effects depended upon the specific stream into which they had been introduced. Generally, increases in guppy biomass caused an increase in gross primary production (GPP) and community respiration (CR). The effects guppies had on GPP were similar to those induced by increased light level and were larger in strength than the effects stream stage had on CR. These results, combined with results from prior experiments, contribute to our growing understanding of how consumers impact stream ecosystem function when they expand their range into novel habitats. Further study will reveal whether local adaptation, known to occur rapidly in these guppy populations, modifies the ecological consequences of this species introduction.


Assuntos
Poecilia , Animais , Ecossistema , Estudos Prospectivos , Estudos Retrospectivos , Rios
4.
Glob Chang Biol ; 27(2): 297-311, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33064866

RESUMO

A fundamental gap in climate change vulnerability research is an understanding of the relative thermal sensitivity of ectotherms. Aquatic insects are vital to stream ecosystem function and biodiversity but insufficiently studied with respect to their thermal physiology. With global temperatures rising at an unprecedented rate, it is imperative that we know how aquatic insects respond to increasing temperature and whether these responses vary among taxa, latitudes, and elevations. We evaluated the thermal sensitivity of standard metabolic rate in stream-dwelling baetid mayflies and perlid stoneflies across a ~2,000 m elevation gradient in the temperate Rocky Mountains in Colorado, USA, and the tropical Andes in Napo, Ecuador. We used temperature-controlled water baths and microrespirometry to estimate changes in oxygen consumption. Tropical mayflies generally exhibited greater thermal sensitivity in metabolism compared to temperate mayflies; tropical mayfly metabolic rates increased more rapidly with temperature and the insects more frequently exhibited behavioral signs of thermal stress. By contrast, temperate and tropical stoneflies did not clearly differ. Varied responses to temperature among baetid mayflies and perlid stoneflies may reflect differences in evolutionary history or ecological roles as herbivores and predators, respectively. Our results show that there is physiological variation across elevations and species and that low-elevation tropical mayflies may be especially imperiled by climate warming. Given such variation among species, broad generalizations about the vulnerability of tropical ectotherms should be made more cautiously.


Assuntos
Ephemeroptera , Animais , Colorado , Ecossistema , Equador , Insetos , Temperatura , Clima Tropical
5.
Am Nat ; 195(6): 964-985, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32469660

RESUMO

Understanding how nutrients flow through food webs is central in ecosystem ecology. Tracer addition experiments are powerful tools to reconstruct nutrient flows by adding an isotopically enriched element into an ecosystem and tracking its fate through time. Historically, the design and analysis of tracer studies have varied widely, ranging from descriptive studies to modeling approaches of varying complexity. Increasingly, isotope tracer data are being used to compare ecosystems and analyze experimental manipulations. Currently, a formal statistical framework for analyzing such experiments is lacking, making it impossible to calculate the estimation errors associated with the model fit, the interdependence of compartments, and the uncertainty in the diet of consumers. In this article we develop a method based on Bayesian hidden Markov models and apply it to the analysis of N15-NH4+ tracer additions in two Trinidadian streams in which light was experimentally manipulated. Through this case study, we illustrate how to estimate N fluxes between ecosystem compartments, turnover rates of N within those compartments, and the associated uncertainty. We also show how the method can be used to compare alternative models of food web structure, calculate the error around derived parameters, and make statistical comparisons between sites or treatments.


Assuntos
Ecossistema , Cadeia Alimentar , Modelos Estatísticos , Nitrogênio/metabolismo , Compostos de Amônio/química , Animais , Luz , Cadeias de Markov , Isótopos de Nitrogênio , Plantas/metabolismo , Rios , Trinidad e Tobago , Água/química
6.
PeerJ ; 7: e8060, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31769445

RESUMO

Anthropogenic threat maps are commonly used as a surrogate for the ecological integrity of rivers in freshwater conservation, but a clearer understanding of their relationships is required to develop proper management plans at large scales. Here, we developed and validated empirical models that link the ecological integrity of rivers to threat maps in a large, heterogeneous and biodiverse Andean-Amazon watershed. Through fieldwork, we recorded data on aquatic invertebrate community composition, habitat quality, and physical-chemical parameters to calculate the ecological integrity of 140 streams/rivers across the basin. Simultaneously, we generated maps that describe the location, extent, and magnitude of impact of nine anthropogenic threats to freshwater systems in the basin. Through seven-fold cross-validation procedure, we found that regression models based on anthropogenic threats alone have limited power for predicting the ecological integrity of rivers. However, the prediction accuracy improved when environmental predictors (slope and elevation) were included, and more so when the predictions were carried out at a coarser scale, such as microbasins. Moreover, anthropogenic threats that amplify the incidence of other pressures (roads, human settlements and oil activities) are the most relevant predictors of ecological integrity. We concluded that threat maps can offer an overall picture of the ecological integrity pattern of the basin, becoming a useful tool for broad-scale conservation planning for freshwater ecosystems. While it is always advisable to have finer scale in situ measurements of ecological integrity, our study shows that threat maps provide fast and cost-effective results, which so often are needed for pressing management and conservation actions.

7.
Science ; 365(6458): 1124-1129, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31515386

RESUMO

Tropical montane rivers (TMR) are born in tropical mountains, descend through montane forests, and feed major rivers, floodplains, and oceans. They are characterized by rapid temperature clines and varied flow disturbance regimes, both of which promote habitat heterogeneity, high biological diversity and endemism, and distinct organisms' life-history adaptations. Production, transport, and processing of sediments, nutrients, and carbon are key ecosystem processes connecting high-elevation streams with lowland floodplains, in turn influencing soil fertility and biotic productivity downstream. TMR provide key ecosystem services to hundreds of millions of people in tropical nations. In light of existing human-induced disturbances, including climate change, TMR can be used as natural model systems to examine the effects of rapid changes in abiotic drivers and their influence on biodiversity and ecosystem function.


Assuntos
Altitude , Ecossistema , Rios , Clima Tropical , Biodiversidade , Humanos
8.
Sci Total Environ ; 681: 503-515, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31128341

RESUMO

The objective of this study was to evaluate if aquatic pollution promote diet shifts in two livebearer fishes (Poeciliidae): an exotic species, the guppy (Poecilia reticulata), and a native livebearer (Phalloceros uai). The study was carried out in a Brazilian basin highly impacted by anthropogenic activities, especially discharge of domestic and industrial sewage from a region with more than five million human inhabitants. To evaluate the trophic ecology of both native and exotic species it was analysed carbon (δ13C) and nitrogen (δ15N) stable isotopes of fish tissue, food resources and, sewage. Moreover, stable isotopes analyses were coupled with gut contents of the two species to provide additional information about fish diet. Exotic guppy abundance was high in the most polluted site, where P. reticulata assimilated carbon directly from sewage. The native species was absent in the most polluted site, but presented wider niches than the exotic species in almost all other sites. Gut content analyses indicated high consumption of aquatic insects by both species. However, while the native species consumed a diverse suite of insect taxa, the exotic species consumed mainly Chironomidae larvae. We conclude that aquatic pollution promotes diet shifts in both native and exotic species, with both species changing their trophic niches in a similar way according to the level of degradation of the environment. The ability to directly assimilate sewage, together with its capacity to survive in environments with poor water quality and its reproductive strategy, may favour the establishment of exotic guppies in strongly polluted sites.


Assuntos
Monitoramento Ambiental , Peixes/fisiologia , Cadeia Alimentar , Poluição da Água/estatística & dados numéricos , Animais , Organismos Aquáticos/fisiologia , Brasil
9.
Sci Rep ; 7(1): 5770, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28720857

RESUMO

Population variation in trophic niche is widespread among organisms and is of increasing interest given its role in both speciation and adaptation to changing environments. Trinidadian guppies (Poecilia reticulata) inhabiting stream reaches with different predation regimes have rapidly evolved divergent life history traits. Here, we investigated the effects of both predation and resource availability on guppy trophic niches by evaluating their gut contents, resource standing stocks, and δ15N and δ13C stable isotopes across five streams during the wet season. We found that guppies from low predation (LP) sites had a consistently higher trophic position and proportion of invertebrates in their guts and assimilate less epilithon than guppies from high predation (HP) sites. Higher trophic position was also associated with lower benthic invertebrate availability. Our results suggest that LP guppies could be more efficient invertebrate consumers, possibly as an evolutionary response to greater intraspecific competition for higher quality food. This may be intensified by seasonality, as wet season conditions can alter resource availability, feeding rates, and the intensity of intraspecific competition. Understanding how guppy diets vary among communities is critical to elucidating the role of niche shifts in mediating the link between environmental change and the evolution of life histories.


Assuntos
Dieta , Ecossistema , Poecilia/fisiologia , Comportamento Predatório/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Evolução Biológica , Feminino , Geografia , Masculino , Dinâmica Populacional , Rios , Estações do Ano , Índias Ocidentais
10.
Ecology ; 97(11): 3154-3166, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27870030

RESUMO

Decades of ecological study have demonstrated the importance of top-down and bottom-up controls on food webs, yet few studies within this context have quantified the magnitude of energy and material fluxes at the whole-ecosystem scale. We examined top-down and bottom-up effects on food web fluxes using a field experiment that manipulated the presence of a consumer, the Trinidadian guppy Poecilia reticulata, and the production of basal resources by thinning the riparian forest canopy to increase incident light. To gauge the effects of these reach-scale manipulations on food web fluxes, we used a nitrogen (15 N) stable isotope tracer to compare basal resource treatments (thinned canopy vs. control) and consumer treatments (guppy introduction vs. control). The thinned canopy stream had higher primary production than the natural canopy control, leading to increased N fluxes to invertebrates that feed on benthic biofilms (grazers), fine benthic organic matter (collector-gatherers), and organic particles suspended in the water column (filter feeders). Stream reaches with guppies also had higher primary productivity and higher N fluxes to grazers and filter feeders. In contrast, N fluxes to collector-gatherers were reduced in guppy introduction reaches relative to upstream controls. N fluxes to leaf-shredding invertebrates, predatory invertebrates, and the other fish species present (Hart's killifish, Anablepsoides hartii) did not differ across light or guppy treatments, suggesting that effects on detritus-based linkages and upper trophic levels were not as strong. Effect sizes of guppy and canopy treatments on N flux rates were similar for most taxa, though guppy effects were the strongest for filter feeding invertebrates while canopy effects were the strongest for collector-gatherer invertebrates. Combined, these results extend previous knowledge about top-down and bottom-up controls on ecosystems by providing experimental, reach-scale evidence that both pathways can act simultaneously and have equally strong influence on nutrient fluxes from inorganic pools through primary consumers.


Assuntos
Peixes/fisiologia , Cadeia Alimentar , Luz , Rios , Animais , Biomassa , Dinâmica Populacional , Trinidad e Tobago , Clima Tropical , Água/química
11.
J Anim Ecol ; 84(4): 955-68, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25704755

RESUMO

Decades of theory and recent empirical results have shown that evolutionary, population, community and ecosystem properties are the result of feedbacks between ecological and evolutionary processes. The vast majority of theory and empirical research on these eco-evolutionary feedbacks has focused on interactions among population size and mean traits of populations. However, numbers and mean traits represent only a fraction of the possible feedback dimensions. Populations of many organisms consist of different size classes that differ in their impact on the environment and each other. Moreover, rarely do we know the map of ecological pathways through which changes in numbers or size structure cause evolutionary change. The goal of this study was to test the role of size structure in eco-evolutionary feedbacks of Trinidadian guppies and to begin to build an eco-evolutionary map along this unexplored dimension. We used a factorial experiment in mesocosms wherein we crossed high- and low-predation guppy phenotypes with population size structure. We tested the ability of changes in size structure to generate selection on the demographic rates of guppies using an integral projection model (IPM). To understand how fitness differences among high- and low-predation phenotypes may be generated, we measured the response of the biomass of lower trophic levels and nutrient cycling to the different phenotype and size structure treatments. We found a significant interaction between guppy phenotype and the size structure treatments for absolute fitness. Size structure had a very large effect on invertebrate biomass in the mesocosms, but there was little or no effect of the phenotype. The effect of size structure on algal biomass depended on guppy phenotype, with no difference in algal biomass in populations with more, smaller guppies, but a large decrease in algal biomass in mesocosms with phenotypes adapted to low-predation risk. These results indicate an important role for size structure partially driving eco-evolutionary feedbacks in guppies. The changes in the ecosystem suggest that the absence of a steep decline in guppy fitness of the low-predation risk populations is likely due to higher consumption of algae when invertebrates are comparatively rare. Overall, these results demonstrate size structure as a possible dimension through which eco-evolutionary feedbacks may occur in natural populations.


Assuntos
Ecossistema , Poecilia/fisiologia , Adaptação Fisiológica , Animais , Biomassa , Invertebrados , Modelos Biológicos , Fenótipo , Poecilia/crescimento & desenvolvimento , Densidade Demográfica , Comportamento Predatório , Trinidad e Tobago
12.
ISME J ; 9(7): 1508-22, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25575311

RESUMO

Diverse microbial consortia profoundly influence animal biology, necessitating an understanding of microbiome variation in studies of animal adaptation. Yet, little is known about such variability among fish, in spite of their importance in aquatic ecosystems. The Trinidadian guppy, Poecilia reticulata, is an intriguing candidate to test microbiome-related hypotheses on the drivers and consequences of animal adaptation, given the recent parallel origins of a similar ecotype across streams. To assess the relationships between the microbiome and host adaptation, we used 16S rRNA amplicon sequencing to characterize gut bacteria of two guppy ecotypes with known divergence in diet, life history, physiology and morphology collected from low-predation (LP) and high-predation (HP) habitats in four Trinidadian streams. Guts were populated by several recurring, core bacteria that are related to other fish associates and rarely detected in the environment. Although gut communities of lab-reared guppies differed from those in the wild, microbiome divergence between ecotypes from the same stream was evident under identical rearing conditions, suggesting host genetic divergence can affect associations with gut bacteria. In the field, gut communities varied over time, across streams and between ecotypes in a stream-specific manner. This latter finding, along with PICRUSt predictions of metagenome function, argues against strong parallelism of the gut microbiome in association with LP ecotype evolution. Thus, bacteria cannot be invoked in facilitating the heightened reliance of LP guppies on lower-quality diets. We argue that the macroevolutionary microbiome convergence seen across animals with similar diets may be a signature of secondary microbial shifts arising some time after host-driven adaptation.


Assuntos
Evolução Biológica , Microbioma Gastrointestinal/genética , Poecilia/genética , Poecilia/microbiologia , Adaptação Fisiológica/genética , Distribuição Animal , Animais , Dieta , Ecossistema , Ecótipo , RNA Ribossômico 16S/genética , Trinidad e Tobago
13.
Oecologia ; 177(1): 245-57, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25430044

RESUMO

A trophic niche shift can occur as an adaptive response to environmental change such as altered resource quality, abundance or composition. Alterations in digestive traits such as gut morphology and physiology may enable these niche shifts and affect the persistence of populations and species. Relatively few studies, however, have assessed how niche shifts influence suites of digestive traits through phenotypic plasticity and evolutionary mechanisms, and how these trait changes can subsequently alter the nutrition, fitness and life history of organisms. We investigated how population divergence and plasticity alter the gut physiology of wild Trinidadian guppies (Poecilia reticulata), assessing whether variation in digestive traits correspond with enhanced nutrient assimilation under a pronounced dietary shift. We examined gut enzyme activity, and gut size and mass of wild guppies from both high-predation (HP) and low-predation (LP) habitats when reared in the laboratory and fed on high- or low-quality diets designed to reflect their dietary differences previously found in nature. After 10 weeks on the experimental diets, HP guppies maintained shorter and lighter guts than LP guppies on either diet. Guppies also differed in their digestive enzymatic profiles, more often reflecting nutrient balancing so that increased enzyme expression tended to correspond with more deficient nutrients in the diet. LP guppies had increased somatic phosphorus at the end of the experiment, possibly related to the higher alkaline phosphatase activity in their guts. Our results suggest that differences in gut physiology exist among populations of Trinidadian guppies that may reflect local adaptation to their disparate environments.


Assuntos
Adaptação Fisiológica , Dieta , Digestão , Ecossistema , Estado Nutricional , Poecilia/fisiologia , Comportamento Predatório , Adaptação Fisiológica/genética , Fosfatase Alcalina/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Evolução Biológica , Composição Corporal , Digestão/genética , Trato Gastrointestinal/anatomia & histologia , Trato Gastrointestinal/enzimologia , Fenótipo , Trinidad e Tobago
14.
Proc Biol Sci ; 280(1769): 20131520, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23966642

RESUMO

Trade of ornamental aquatic species is a multi-billion dollar industry responsible for the introduction of myriad fishes into novel ecosystems. Although aquarium invaders have the potential to alter ecosystem function, regulation of the trade is minimal and little is known about the ecosystem-level consequences of invasion for all but a small number of aquarium species. Here, we demonstrate how ecological stoichiometry can be used as a framework to identify aquarium invaders with the potential to modify ecosystem processes. We show that explosive growth of an introduced population of stoichiometrically unique, phosphorus (P)-rich catfish in a river in southern Mexico significantly transformed stream nutrient dynamics by altering nutrient storage and remineralization rates. Notably, changes varied between elements; the P-rich fish acted as net sinks of P and net remineralizers of nitrogen. Results from this study suggest species-specific stoichiometry may be insightful for understanding how invasive species modify nutrient dynamics when their population densities and elemental composition differ substantially from native organisms. Risk analysis for potential aquarium imports should consider species traits such as body stoichiometry, which may increase the likelihood that an invasion will alter the structure and function of ecosystems.


Assuntos
Carbono/metabolismo , Peixes-Gato/metabolismo , Espécies Introduzidas , Nitrogênio/metabolismo , Fósforo/metabolismo , Rios/química , Animais , Biomassa , Peixes/metabolismo , México , Densidade Demográfica , Estações do Ano
15.
PLoS One ; 7(9): e45230, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23028865

RESUMO

The effect of consumers on their resources has been demonstrated in many systems but is often confounded by trophic interactions with other consumers. Consumers may also have behavioral and life history adaptations to each other and to co-occurring predators that may additionally modulate their particular roles in ecosystems. We experimentally excluded large consumers from tile periphyton, leaves and natural benthic substrata using submerged electrified frames in three stream reaches with overlapping consumer assemblages in Trinidad, West Indies. Concurrently, we assessed visits to (non-electrified) control frames by the three most common large consumers-primarily insectivorous killifish (Rivulus hartii), omnivorous guppies (Poecilia reticulata) and omnivorous crabs (Eudaniela garmani). Consumers caused the greatest decrease in final chlorophyll a biomass and accrual rates the most in the downstream reach containing all three focal consumers in the presence of fish predators. Consumers also caused the greatest increase in leaf decay rates in the upstream reach containing only killifish and crabs. In the downstream reach where guppies co-occur with predators, we found significantly lower benthic invertebrate biomass in control relative to exclosure treatments than the midstream reach where guppies occur in the absence of predators. These data suggest that differences in guppy foraging, potentially driven by differences in their life history phenotype, may affect ecosystem structure and processes as much as their presence or absence and that interactions among consumers may further mediate their effects in these stream ecosystems.


Assuntos
Braquiúros/fisiologia , Ecossistema , Fundulidae/fisiologia , Poecilia/fisiologia , Rios , Animais , Evolução Biológica , Biomassa , Clorofila/análise , Clorofila A , Cadeia Alimentar , Fenótipo , Folhas de Planta/química , Plantas/química , Comportamento Predatório , Trinidad e Tobago
16.
PLoS One ; 7(6): e38806, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22761706

RESUMO

Non-native species and habitat degradation are two major catalysts of environmental change and often occur simultaneously. In freshwater systems, degradation of adjacent terrestrial vegetation may facilitate introduced species by altering resource availability. Here we examine how the presence of intact riparian cover influences the impact of an invasive herbivorous snail, Tarebia granifera, on nitrogen (N) cycling in aquatic systems on the island of Trinidad. We quantified snail biomass, growth, and N excretion in locations where riparian vegetation was present or removed to determine how snail demographics and excretion were related to the condition of the riparian zone. In three Neotropical streams, we measured snail biomass and N excretion in open and closed canopy habitats to generate estimates of mass- and area-specific N excretion rates. Snail biomass was 2 to 8 times greater and areal N excretion rates ranged from 3 to 9 times greater in open canopy habitats. Snails foraging in open canopy habitat also had access to more abundant food resources and exhibited greater growth and mass-specific N excretion rates. Estimates of ecosystem N demand indicated that snail N excretion in fully closed, partially closed, and open canopy habitats supplied 2%, 11%, and 16% of integrated ecosystem N demand, respectively. We conclude that human-mediated riparian canopy loss can generate hotspots of snail biomass, growth, and N excretion along tropical stream networks, altering the impacts of an invasive snail on the biogeochemical cycling of N.


Assuntos
Biomassa , Conservação dos Recursos Naturais , Ecossistema , Ciclo do Nitrogênio/fisiologia , Nitrogênio/metabolismo , Caramujos/fisiologia , Animais , Rios , Trinidad e Tobago
17.
Sci Total Environ ; 417-418: 92-7, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22257508

RESUMO

Anthropogenic and natural mercury (Hg) contamination have been a major concern in South America since the early 1900s, but it remains unclear whether Hg levels pose a hazard to human health in regions that lack point sources. We studied Hg biomagnification patterns in the food web of Río Las Marías, an Andean piedmont stream in northern Venezuela, which supports a major subsistence fishery. Mercury concentrations and trophic positions in the food web (based on stable isotopes of nitrogen and carbon) were characterized for 24 fish species representing seven trophic guilds (piscivore, generalized carnivore, omnivore, invertivore, algivore, terrestrial herbivore, detritivore). Mercury showed significant biomagnification through the food web, but vertical trophic position explained little of the variation. Muscle Hg concentrations also increased with body mass across the food web. Trophic guild assignments offered a useful alternative to explicit analysis of vertical trophic position; piscivores showed the highest Hg concentrations and terrestrial herbivores had the lowest. There were no consistent seasonal differences in Hg concentrations within the 5 species sampled during both the wet and dry seasons, suggesting that bioavailability is unaffected by strong seasonal variation in rainfall. From a human health perspective, many medium- to large-bodied species that are commonly eaten had Hg concentrations that exceeded International Marketing Limit (IML) (0.5 µg/g) and World Health Organization (WHO) guidelines (0.2 µg/g) for consumption. We conclude that Hg concentrations may pose a health concern for local subsistence fishermen and their families. Our results suggest a need to perform risk assessment and better understand contaminant levels in subsistence and commercial fisheries even in areas that lack known Hg point sources.


Assuntos
Peixes/metabolismo , Cadeia Alimentar , Mercúrio/análise , Mercúrio/farmacocinética , Músculo Esquelético/metabolismo , Animais , Modelos Lineares , Músculo Esquelético/química , Rios , Estações do Ano , Clima Tropical , Venezuela
18.
Proc Biol Sci ; 278(1723): 3329-35, 2011 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-21429923

RESUMO

Throughout Amazonia, overfishing has decimated populations of fruit-eating fishes, especially the large-bodied characid, Colossoma macropomum. During lengthy annual floods, frugivorous fishes enter vast Amazonian floodplains, consume massive quantities of fallen fruits and egest viable seeds. Many tree and liana species are clearly specialized for icthyochory, and seed dispersal by fish may be crucial for the maintenance of Amazonian wetland forests. Unlike frugivorous mammals and birds, little is known about seed dispersal effectiveness of fishes. Extensive mobility of frugivorous fish could result in extremely effective, multi-directional, long-distance seed dispersal. Over three annual flood seasons, we tracked fine-scale movement patterns and habitat use of wild Colossoma, and seed retention in the digestive tracts of captive individuals. Our mechanistic model predicts that Colossoma disperses seeds extremely long distances to favourable habitats. Modelled mean dispersal distances of 337-552 m and maximum of 5495 m are among the longest ever reported. At least 5 per cent of seeds are predicted to disperse 1700-2110 m, farther than dispersal by almost all other frugivores reported in the literature. Additionally, seed dispersal distances increased with fish size, but overfishing has biased Colossoma populations to smaller individuals. Thus, overexploitation probably disrupts an ancient coevolutionary relationship between Colossoma and Amazonian plants.


Assuntos
Caraciformes/fisiologia , Ecossistema , Trânsito Gastrointestinal/fisiologia , Modelos Biológicos , Rios , Dispersão de Sementes/fisiologia , Algoritmos , Animais , Simulação por Computador , Peru , Telemetria
19.
Oecologia ; 161(2): 279-90, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19466459

RESUMO

Seed dispersal is a critical stage in the life history of plants. It determines the initial pattern of juvenile distribution, and can influence community dynamics and the evolutionary trajectories of individual species. Vertebrate frugivores are the primary vector of seed dispersal in tropical forests; however, most studies of seed dispersal focus on birds, bats and monkeys. Nevertheless, South America harbors at least 200 species of frugivorous fishes, which move into temporarily flooded habitats during lengthy flood seasons and consume fruits that fall into the water; and yet, we know remarkably little about the quality of seed dispersal they effect. We investigated the seed dispersal activities of two species of large-bodied, commercially important fishes (Colossoma macropomum and Piaractus brachypomus, Characidae) over 3 years in Pacaya-Samiria National Reserve (Peru). We assessed the diet of these fishes during the flood season, conducted germination trials with seeds collected from digestive tracts, and quantified fruit availability. In the laboratory, we fed fruits to captive Colossoma, quantified the proportion of seeds defecated by adult and juvenile fish, and used these seeds in additional germination experiments. Our results indicate that Colossoma and Piaractus disperse large quantities of seeds from up to 35% of the trees and lianas that fruit during the flood season. Additionally, these seeds can germinate after floodwaters recede. Overexploitation has reduced the abundance of our focal fish species, as well as changed the age structure of populations. Moreover, older fish are more effective seed dispersers than smaller, juvenile fish. Overfishing, therefore, likely selects for the poorest seed dispersers, thus disrupting an ancient interaction between seeds and their dispersal agents.


Assuntos
Demografia , Ecossistema , Peixes/fisiologia , Rios , Estações do Ano , Sementes/fisiologia , Análise de Variância , Animais , Brasil , Conteúdo Gastrointestinal , Germinação/fisiologia , Peru
20.
Science ; 313(5788): 833-6, 2006 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-16902137

RESUMO

Harvesting threatens many vertebrate species, yet few whole-system manipulations have been conducted to predict the consequences of vertebrate losses on ecosystem function. Here, we show that a harvested migratory detrital-feeding fish (Prochilodontidae: Prochilodus mariae) modulates carbon flow and ecosystem metabolism. Natural declines in and experimental removal of Prochilodus decreased downstream transport of organic carbon and increased primary production and respiration. Thus, besides its economic value, Prochilodus is a critical ecological component of South American rivers. Lack of functional redundancy for this species highlights the importance of individual species and, contrary to theory, suggests that losing one species from lower trophic levels can affect ecosystem functioning even in species-rich ecosystems.


Assuntos
Carbono/metabolismo , Ecossistema , Pesqueiros , Peixes/fisiologia , Rios , Migração Animal , Animais , Biofilmes , Biomassa , Tamanho Corporal , Conservação dos Recursos Naturais , Comportamento Alimentar , Peixes/anatomia & histologia , Cadeia Alimentar , Dinâmica Populacional , Estações do Ano , América do Sul , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA