Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Protoc ; 19(5): 1498-1528, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38429517

RESUMO

Mammalian cells sense and react to the mechanics of their immediate microenvironment. Therefore, the characterization of the biomechanical properties of tissues with high spatial resolution provides valuable insights into a broad variety of developmental, homeostatic and pathological processes within living organisms. The biomechanical properties of the basement membrane (BM), an extracellular matrix (ECM) substructure measuring only ∼100-400 nm across, are, among other things, pivotal to tumor progression and metastasis formation. Although the precise assignment of the Young's modulus E of such a thin ECM substructure especially in between two cell layers is still challenging, biomechanical data of the BM can provide information of eminent diagnostic potential. Here we present a detailed protocol to quantify the elastic modulus of the BM in murine and human lung tissue, which is one of the major organs prone to metastasis. This protocol describes a streamlined workflow to determine the Young's modulus E of the BM between the endothelial and epithelial cell layers shaping the alveolar wall in lung tissues using atomic force microscopy (AFM). Our step-by-step protocol provides instructions for murine and human lung tissue extraction, inflation of these tissues with cryogenic cutting medium, freezing and cryosectioning of the tissue samples, and AFM force-map recording. In addition, it guides the reader through a semi-automatic data analysis procedure to identify the pulmonary BM and extract its Young's modulus E using an in-house tailored user-friendly AFM data analysis software, the Center for Applied Tissue Engineering and Regenerative Medicine processing toolbox, which enables automatic loading of the recorded force maps, conversion of the force versus piezo-extension curves to force versus indentation curves, calculation of Young's moduli and generation of Young's modulus maps, where the pulmonary BM can be identified using a semi-automatic spatial filtering tool. The entire protocol takes 1-2 d.


Assuntos
Membrana Basal , Módulo de Elasticidade , Pulmão , Microscopia de Força Atômica , Animais , Microscopia de Força Atômica/métodos , Camundongos , Humanos , Pulmão/citologia , Fenômenos Biomecânicos
2.
Front Immunol ; 14: 1154528, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37539058

RESUMO

The desmoplastic reaction observed in many cancers is a hallmark of disease progression and prognosis, particularly in breast and pancreatic cancer. Stromal-derived extracellular matrix (ECM) is significantly altered in desmoplasia, and as such plays a critical role in driving cancer progression. Using fibroblast-derived matrices (FDMs), we show that cancer cells have increased growth on cancer associated FDMs, when compared to FDMs derived from non-malignant tissue (normal) fibroblasts. We assess the changes in ECM characteristics from normal to cancer-associated stroma at the primary tumor site. Compositional, structural, and mechanical analyses reveal significant differences, with an increase in abundance of core ECM proteins, coupled with an increase in stiffness and density in cancer-associated FDMs. From compositional changes of FDM, we derived a 36-ECM protein signature, which we show matches in large part with the changes in pancreatic ductal adenocarcinoma (PDAC) tumor and metastases progression. Additionally, this signature also matches at the transcriptomic level in multiple cancer types in patients, prognostic of their survival. Together, our results show relevance of FDMs for cancer modelling and identification of desmoplastic ECM components for further mechanistic studies.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Prognóstico , Neoplasias Pancreáticas/patologia , Fibroblastos/metabolismo , Carcinoma Ductal Pancreático/patologia , Proteínas da Matriz Extracelular , Neoplasias Pancreáticas
3.
J Biol Chem ; 297(4): 101224, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34560099

RESUMO

Energy metabolism and extracellular matrix (ECM) function together orchestrate and maintain tissue organization, but crosstalk between these processes is poorly understood. Here, we used single-cell RNA-Seq (scRNA-Seq) analysis to uncover the importance of the mitochondrial respiratory chain for ECM homeostasis in mature cartilage. This tissue produces large amounts of a specialized ECM to promote skeletal growth during development and maintain mobility throughout life. A combined approach of high-resolution scRNA-Seq, mass spectrometry/matrisome analysis, and atomic force microscopy was applied to mutant mice with cartilage-specific inactivation of respiratory chain function. This genetic inhibition in cartilage results in the expansion of a central area of 1-month-old mouse femur head cartilage, showing disorganized chondrocytes and increased deposition of ECM material. scRNA-Seq analysis identified a cell cluster-specific decrease in mitochondrial DNA-encoded respiratory chain genes and a unique regulation of ECM-related genes in nonarticular chondrocytes. These changes were associated with alterations in ECM composition, a shift in collagen/noncollagen protein content, and an increase of collagen crosslinking and ECM stiffness. These results demonstrate that mitochondrial respiratory chain dysfunction is a key factor that can promote ECM integrity and mechanostability in cartilage and presumably also in many other tissues.


Assuntos
Cartilagem/metabolismo , Matriz Extracelular/metabolismo , Fêmur/metabolismo , RNA-Seq , Análise de Célula Única , Animais , Transporte de Elétrons , Matriz Extracelular/genética , Camundongos , Camundongos Transgênicos
4.
Nat Mater ; 20(6): 892-903, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33495631

RESUMO

The basement membrane (BM) is a special type of extracellular matrix and presents the major barrier cancer cells have to overcome multiple times to form metastases. Here we show that BM stiffness is a major determinant of metastases formation in several tissues and identify netrin-4 (Net4) as a key regulator of BM stiffness. Mechanistically, our biophysical and functional analyses in combination with mathematical simulations show that Net4 softens the mechanical properties of native BMs by opening laminin node complexes, decreasing cancer cell potential to transmigrate this barrier despite creating bigger pores. Our results therefore reveal that BM stiffness is dominant over pore size, and that the mechanical properties of 'normal' BMs determine metastases formation and patient survival independent of cancer-mediated alterations. Thus, identifying individual Net4 protein levels within native BMs in major metastatic organs may have the potential to define patient survival even before tumour formation. The ratio of Net4 to laminin molecules determines BM stiffness, such that the more Net4, the softer the BM, thereby decreasing cancer cell invasion activity.


Assuntos
Membrana Basal/metabolismo , Fenômenos Mecânicos , Metástase Neoplásica , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Humanos , Netrinas/metabolismo
5.
Int J Mol Sci ; 23(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35008608

RESUMO

Ageing or obesity are risk factors for protein aggregation in the endoplasmic reticulum (ER) of chondrocytes. This condition is called ER stress and leads to induction of the unfolded protein response (UPR), which, depending on the stress level, restores normal cell function or initiates apoptotic cell death. Here the role of ER stress in knee osteoarthritis (OA) was evaluated. It was first tested in vitro and in vivo whether a knockout (KO) of the protein disulfide isomerase ERp57 in chondrocytes induces sufficient ER stress for such analyses. ER stress in ERp57 KO chondrocytes was confirmed by immunofluorescence, immunohistochemistry, and transmission electron microscopy. Knee joints of wildtype (WT) and cartilage-specific ERp57 KO mice (ERp57 cKO) were analyzed by indentation-type atomic force microscopy (IT-AFM), toluidine blue, and immunofluorescence/-histochemical staining. Apoptotic cell death was investigated by a TUNEL assay. Additionally, OA was induced via forced exercise on a treadmill. ER stress in chondrocytes resulted in a reduced compressive stiffness of knee cartilage. With ER stress, 18-month-old mice developed osteoarthritic cartilage degeneration with osteophyte formation in knee joints. These degenerative changes were preceded by apoptotic death in articular chondrocytes. Young mice were not susceptible to OA, even when subjected to forced exercise. This study demonstrates that ER stress induces the development of age-related knee osteoarthritis owing to a decreased protective function of the UPR in chondrocytes with increasing age, while apoptosis increases. Therefore, inhibition of ER stress appears to be an attractive therapeutic target for OA.


Assuntos
Condrócitos/metabolismo , Estresse do Retículo Endoplasmático , Articulação do Joelho/metabolismo , Osteoartrite do Joelho/metabolismo , Isomerases de Dissulfetos de Proteínas , Animais , Apoptose , Linhagem Celular , Condrócitos/fisiologia , Humanos , Articulação do Joelho/patologia , Masculino , Camundongos , Camundongos Knockout , Osteoartrite do Joelho/etiologia , Osteoartrite do Joelho/fisiopatologia , Resposta a Proteínas não Dobradas
6.
Dis Model Mech ; 13(11)2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33023972

RESUMO

Mucolipidosis type III (MLIII) gamma is a rare inherited lysosomal storage disorder caused by mutations in GNPTG encoding the γ-subunit of GlcNAc-1-phosphotransferase, the key enzyme ensuring proper intracellular location of multiple lysosomal enzymes. Patients with MLIII gamma typically present with osteoarthritis and joint stiffness, suggesting cartilage involvement. Using Gnptg knockout (Gnptgko ) mice as a model of the human disease, we showed that missorting of a number of lysosomal enzymes is associated with intracellular accumulation of chondroitin sulfate in Gnptgko chondrocytes and their impaired differentiation, as well as with altered microstructure of the cartilage extracellular matrix (ECM). We also demonstrated distinct functional and structural properties of the Achilles tendons isolated from Gnptgko and Gnptab knock-in (Gnptabki ) mice, the latter displaying a more severe phenotype resembling mucolipidosis type II (MLII) in humans. Together with comparative analyses of joint mobility in MLII and MLIII patients, these findings provide a basis for better understanding of the molecular reasons leading to joint pathology in these patients. Our data suggest that lack of GlcNAc-1-phosphotransferase activity due to defects in the γ-subunit causes structural changes within the ECM of connective and mechanosensitive tissues, such as cartilage and tendon, and eventually results in functional joint abnormalities typically observed in MLIII gamma patients. This idea was supported by a deficit of the limb motor function in Gnptgko mice challenged on a rotarod under fatigue-associated conditions, suggesting that the impaired motor performance of Gnptgko mice was caused by fatigue and/or pain at the joint.This article has an associated First Person interview with the first author of the paper.


Assuntos
Cartilagem/patologia , Homeostase , Articulações/patologia , Mucolipidoses/metabolismo , Mucolipidoses/patologia , Tendão do Calcâneo/patologia , Tendão do Calcâneo/ultraestrutura , Envelhecimento/patologia , Animais , Cartilagem/ultraestrutura , Diferenciação Celular , Condrócitos/metabolismo , Condrócitos/patologia , Condrócitos/ultraestrutura , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Colágenos Fibrilares/metabolismo , Lisossomos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora , Mucolipidoses/fisiopatologia , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
7.
Int J Mol Sci ; 21(2)2020 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-31963938

RESUMO

Matrilins (MATN1, MATN2, MATN3 and MATN4) are adaptor proteins of the cartilage extracellular matrix (ECM), which bridge the collagen II and proteoglycan networks. In humans, dominant-negative mutations in MATN3 lead to various forms of mild chondrodysplasias. However, single or double matrilin knockout mice generated previously in our laboratory do not show an overt skeletal phenotype, suggesting compensation among the matrilin family members. The aim of our study was to establish a mouse line, which lacks all four matrilins and analyze the consequence of matrilin deficiency on endochondral bone formation and cartilage function. Matn1-4-/- mice were viable and fertile, and showed a lumbosacral transition phenotype characterized by the sacralization of the sixth lumbar vertebra. The development of the appendicular skeleton, the structure of the growth plate, chondrocyte differentiation, proliferation, and survival were normal in mutant mice. Biochemical analysis of knee cartilage demonstrated moderate alterations in the extractability of the binding partners of matrilins in Matn1-4-/- mice. Atomic force microscopy (AFM) revealed comparable compressive stiffness but higher collagen fiber diameters in the growth plate cartilage of quadruple mutant compared to wild-type mice. Importantly, Matn1-4-/- mice developed more severe spontaneous osteoarthritis at the age of 18 months, which was accompanied by changes in the biomechanical properties of the articular cartilage. Interestingly, Matn4-/- mice also developed age-associated osteoarthritis suggesting a crucial role of MATN4 in maintaining the stability of the articular cartilage. Collectively, our data provide evidence that matrilins are important to protect articular cartilage from deterioration and are involved in the specification of the vertebral column.


Assuntos
Envelhecimento/genética , Proteínas Matrilinas/genética , Músculo Esquelético/patologia , Osteoartrite/patologia , Animais , Proliferação de Células , Células Cultivadas , Condrócitos/citologia , Modelos Animais de Doenças , Feminino , Técnicas de Inativação de Genes , Humanos , Masculino , Camundongos , Camundongos Knockout , Microscopia de Força Atômica , Osteoartrite/genética
8.
Bone ; 133: 115181, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31926346

RESUMO

Numerous studies identified a role for the sensory neuropeptides substance P (SP) and alpha calcitonin gene-related peptide (αCGRP) in osteoarthritis (OA) pain behavior. Surprisingly, little attention has been paid on how their trophic effects on cartilage and bone cells might affect structural changes of bone and cartilage in OA pathology. Here, we sought to elucidate sensory neuropeptides influence on structural alterations of bone and cartilage during murine OA pathophysiology. OA was induced by destabilization of the medial meniscus (DMM) in the right knee joint of 12 weeks old male C57Bl/6J wildtype (WT) mice and mice either deficient for SP (tachykinin 1 (Tac1)-/-) or αCGRP. By OARSI histopathological grading we observed significant cartilage matrix degradation after DMM surgery in αCGRP-deficient mice after 4 weeks whereas Tac1-/- scores were not different to sham mice before 12 weeks after surgery. Indentation-type atomic force microscopy (IT-AFM) identified a strong superficial zone (SZ) cartilage phenotype in Tac1-/- Sham mice. Opposed to WT and αCGRP-/- mice, SZ cartilage of Tac1-/- mice softened 2 weeks after OA induction. In Tac1-/- DMM mice, bone volume to total volume ratio (BV/TV) increased significantly compared to the Tac1-/- Sham group, 2 weeks after surgery. WT mice had reduced BV/TV compared to αCGRP-/- and Tac1-/- mice after 12 weeks. Increased calcified cartilage thickness and medial condyle diameter were detected in the medial tibia of all groups 8 weeks after OA induction by nanoCT analysis. Meniscal ossification occurred in all OA groups, but was significantly stronger in the absence of neuropeptides. Increased serum concentration of the respective non-deleted neuropeptide was observed in both neuropeptide-deficient mice strains. Both neuropeptides protect from age-related bone structural changes under physiological conditions and SP additionally demonstrates an anabolic effect on bone structure preservation in a pathophysiological situation. Both neuropeptide deficient mice display an intrinsic structural cartilage matrix phenotype that might alter progression of cartilage degeneration in OA.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Osso e Ossos , Peptídeo Relacionado com Gene de Calcitonina , Modelos Animais de Doenças , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
J Cell Sci ; 131(23)2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30333144

RESUMO

Transthyretin (TTR)-related familial amyloid polyneuropathy (ATTR) results from aggregation and extracellular disposition of misfolded TTR mutants. Growing evidence suggests the importance of hepatic chaperones for the modulation of pathogenesis. We took advantage of induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (HLCs) from ATTR patients (ATTR-HLCs) to compare chaperone gene expression to that in HLCs from healthy individuals (H-HLCs). From the set of genes analyzed, chaperones that are predominantly located extracellularly were differently expressed. Expression of the chaperones showed a high correlation with TTR in both ATTR-HLCs and H-HLCs. In contrast, after TTR knockdown, the correlation was mainly affected in ATTR-HLCs suggesting that differences in TTR expression triggers aberrant chaperone expression. Serpin family A member 1 (SERPINA1) was the only extracellular chaperone that was markedly upregulated after TTR knockdown in ATTR-HLCs. Co-immunoprecipitation revealed that SERPINA1 physically interacts with TTR. In vitro assays indicated that SERPINA1 can interfere with TTR aggregation. Taken together, our results suggest that extracellular chaperones play a crucial role in ATTR pathogenesis, in particular SERPINA1, which may affect amyloid formation.


Assuntos
Neuropatias Amiloides Familiares/metabolismo , Hepatócitos/metabolismo , Chaperonas Moleculares/genética , alfa 1-Antitripsina/genética , Neuropatias Amiloides Familiares/genética , Neuropatias Amiloides Familiares/patologia , Diferenciação Celular/fisiologia , Hepatócitos/citologia , Hepatócitos/patologia , Humanos , Chaperonas Moleculares/biossíntese , alfa 1-Antitripsina/metabolismo
12.
PLoS One ; 11(9): e0161455, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27584576

RESUMO

Familial amyloid polyneuropathy (FAP) is caused by mutations of the transthyretin (TTR) gene, predominantly expressed in the liver. Two compounds that knockdown TTR, comprising a small interfering RNA (siRNA; ALN-TTR-02) and an antisense oligonucleotide (ASO; IONIS-TTRRx), are currently being evaluated in clinical trials. Since primary hepatocytes from FAP patients are rarely available for molecular analysis and commercial tissue culture cells or animal models lack the patient-specific genetic background, this study uses primary cells derived from urine of FAP patients. Urine-derived cells were reprogrammed to induced pluripotent stem cells (iPSCs) with high efficiency. Hepatocyte-like cells (HLCs) showing typical hepatic marker expression were obtained from iPSCs of the FAP patients. TTR mRNA expression of FAP HLCs almost reached levels measured in human hepatocytes. To assess TTR knockdown, siTTR1 and TTR-ASO were introduced to HLCs. A significant downregulation (>80%) of TTR mRNA was induced in the HLCs by both oligonucleotides. TTR protein present in the cell culture supernatant of HLCs was similarly downregulated. Gene expression of other hepatic markers was not affected by the therapeutic oligonucleotides. Our data indicate that urine cells (UCs) after reprogramming and hepatic differentiation represent excellent primary human target cells to assess the efficacy and specificity of novel compounds.


Assuntos
Neuropatias Amiloides Familiares/tratamento farmacológico , Hepatócitos/efeitos dos fármacos , Oligonucleotídeos Antissenso/uso terapêutico , Adulto , Idoso , Neuropatias Amiloides Familiares/genética , Neuropatias Amiloides Familiares/urina , Diferenciação Celular , Avaliação Pré-Clínica de Medicamentos , Feminino , Técnicas de Silenciamento de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Pessoa de Meia-Idade , Oligonucleotídeos Antissenso/farmacologia , Pré-Albumina/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...