Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Biochemistry ; 63(9): 1214-1224, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38679935

RESUMO

A central goal of photoprotective energy dissipation processes is the regulation of singlet oxygen (1O2*) and reactive oxygen species in the photosynthetic apparatus. Despite the involvement of 1O2* in photodamage and cell signaling, few studies directly correlate 1O2* formation to nonphotochemical quenching (NPQ) or lack thereof. Here, we combine spin-trapping electron paramagnetic resonance (EPR) and time-resolved fluorescence spectroscopies to track in real time the involvement of 1O2* during photoprotection in plant thylakoid membranes. The EPR spin-trapping method for detection of 1O2* was first optimized for photosensitization in dye-based chemical systems and then used to establish methods for monitoring the temporal dynamics of 1O2* in chlorophyll-containing photosynthetic membranes. We find that the apparent 1O2* concentration in membranes changes throughout a 1 h period of continuous illumination. During an initial response to high light intensity, the concentration of 1O2* decreased in parallel with a decrease in the chlorophyll fluorescence lifetime via NPQ. Treatment of membranes with nigericin, an uncoupler of the transmembrane proton gradient, delayed the activation of NPQ and the associated quenching of 1O2* during high light. Upon saturation of NPQ, the concentration of 1O2* increased in both untreated and nigericin-treated membranes, reflecting the utility of excess energy dissipation in mitigating photooxidative stress in the short term (i.e., the initial ∼10 min of high light).


Assuntos
Fotossíntese , Oxigênio Singlete , Tilacoides , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Oxigênio Singlete/metabolismo , Oxigênio Singlete/química , Tilacoides/metabolismo , Tilacoides/química , Detecção de Spin/métodos , Clorofila/metabolismo , Clorofila/química , Spinacia oleracea/metabolismo , Spinacia oleracea/química , Luz
2.
Nat Commun ; 14(1): 6621, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857617

RESUMO

Efficiently balancing photochemistry and photoprotection is crucial for survival and productivity of photosynthetic organisms in the rapidly fluctuating light levels found in natural environments. The ability to respond quickly to sudden changes in light level is clearly advantageous. In the alga Nannochloropsis oceanica we observed an ability to respond rapidly to sudden increases in light level which occur soon after a previous high-light exposure. This ability implies a kind of memory. In this work, we explore the xanthophyll cycle in N. oceanica as a short-term photoprotective memory system. By combining snapshot fluorescence lifetime measurements with a biochemistry-based quantitative model, we show that short-term memory arises from the xanthophyll cycle. In addition, the model enables us to characterize the relative quenching abilities of the three xanthophyll cycle components. Given the ubiquity of the xanthophyll cycle in photosynthetic organisms the model described here will be of utility in improving our understanding of vascular plant and algal photoprotection with important implications for crop productivity.


Assuntos
Estramenópilas , Xantofilas , Xantofilas/metabolismo , Fotossíntese , Fotoquímica , Plantas/metabolismo , Luz
4.
Nature ; 619(7969): 300-304, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37316658

RESUMO

Photosynthesis is generally assumed to be initiated by a single photon1-3 from the Sun, which, as a weak light source, delivers at most a few tens of photons per nanometre squared per second within a chlorophyll absorption band1. Yet much experimental and theoretical work over the past 40 years has explored the events during photosynthesis subsequent to absorption of light from intense, ultrashort laser pulses2-15. Here, we use single photons to excite under ambient conditions the light-harvesting 2 (LH2) complex of the purple bacterium Rhodobacter sphaeroides, comprising B800 and B850 rings that contain 9 and 18 bacteriochlorophyll molecules, respectively. Excitation of the B800 ring leads to electronic energy transfer to the B850 ring in approximately 0.7 ps, followed by rapid B850-to-B850 energy transfer on an approximately 100-fs timescale and light emission at 850-875 nm (refs. 16-19). Using a heralded single-photon source20,21 along with coincidence counting, we establish time correlation functions for B800 excitation and B850 fluorescence emission and demonstrate that both events involve single photons. We also find that the probability distribution of the number of heralds per detected fluorescence photon supports the view that a single photon can upon absorption drive the subsequent energy transfer and fluorescence emission and hence, by extension, the primary charge separation of photosynthesis. An analytical stochastic model and a Monte Carlo numerical model capture the data, further confirming that absorption of single photons is correlated with emission of single photons in a natural light-harvesting complex.


Assuntos
Complexos de Proteínas Captadores de Luz , Fótons , Fotossíntese , Rhodobacter sphaeroides , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bacterioclorofilas/química , Bacterioclorofilas/metabolismo , Transferência de Energia , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/metabolismo , Fluorescência , Processos Estocásticos , Método de Monte Carlo
5.
J Phys Chem B ; 127(20): 4460-4469, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37192324

RESUMO

Aquatic photosynthetic organisms evolved to use a variety of light frequencies to perform photosynthesis. Phycobiliprotein phycocyanin 645 (PC645) is a light-harvesting complex in cryptophyte algae able to transfer the absorbed green solar light to other antennas with over 99% efficiency. The infrared signatures of the phycobilin pigments embedded in PC645 are difficult to access and could provide useful information to understand the mechanism behind the high efficiency of energy transfer in PC645. We use visible-pump IR-probe and two-dimensional electronic vibrational spectroscopy to study the dynamical evolution and assign the fingerprint mid-infrared signatures to each pigment in PC645. Here, we report the pigment-specific vibrational markers that enable us to track the spatial flow of excitation energy between the phycobilin pigment pairs. We speculate that two high-frequency modes (1588 and 1596 cm-1) are involved in the vibronic coupling leading to fast (

Assuntos
Ficobilinas , Ficocianina , Ficobilinas/química , Ficocianina/química , Ficocianina/metabolismo , Ficobiliproteínas/química , Fotossíntese
6.
Nat Commun ; 13(1): 7388, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36450719

RESUMO

Quantum fluids exhibit quantum mechanical effects at the macroscopic level, which contrast strongly with classical fluids. Gain-dissipative solid-state exciton-polaritons systems are promising emulation platforms for complex quantum fluid studies at elevated temperatures. Recently, halide perovskite polariton systems have emerged as materials with distinctive advantages over other room-temperature systems for future studies of topological physics, non-Abelian gauge fields, and spin-orbit interactions. However, the demonstration of nonlinear quantum hydrodynamics, such as superfluidity and Cerenkov flow, which is a consequence of the renormalized elementary excitation spectrum, remains elusive in halide perovskites. Here, using homogenous halide perovskites single crystals, we report, in both one- and two-dimensional cases, the complete set of quantum fluid phase transitions from normal classical fluids to scatterless polariton superfluids and supersonic fluids-all at room temperature, clear consequences of the Landau criterion. Specifically, the supersonic Cerenkov wave pattern was observed at room temperature. The experimental results are also in quantitative agreement with theoretical predictions from the dissipative Gross-Pitaevskii equation. Our results set the stage for exploring the rich non-equilibrium quantum fluid many-body physics at room temperature and also pave the way for important polaritonic device applications.

7.
Proc Natl Acad Sci U S A ; 119(42): e2208033119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215463

RESUMO

The photosystem II core complex (PSII-CC) is the smallest subunit of the oxygenic photosynthetic apparatus that contains core antennas and a reaction center, which together allow for rapid energy transfer and charge separation, ultimately leading to efficient solar energy conversion. However, there is a lack of consensus on the interplay between the energy transfer and charge separation dynamics of the core complex. Here, we report the application of two-dimensional electronic-vibrational (2DEV) spectroscopy to the spinach PSII-CC at 77 K. The simultaneous temporal and spectral resolution afforded by 2DEV spectroscopy facilitates the separation and direct assignment of coexisting dynamical processes. Our results show that the dominant dynamics of the PSII-CC are distinct in different excitation energy regions. By separating the excitation regions, we are able to distinguish the intraprotein dynamics and interprotein energy transfer. Additionally, with the improved resolution, we are able to identify the key pigments involved in the pathways, allowing for a direct connection between dynamical and structural information. Specifically, we show that C505 in CP43 and the peripheral chlorophyll ChlzD1 in the reaction center are most likely responsible for energy transfer from CP43 to the reaction center.


Assuntos
Clorofila , Complexo de Proteína do Fotossistema II , Clorofila/metabolismo , Transferência de Energia , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Análise Espectral
8.
Faraday Discuss ; 237(0): 419-427, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36062843

RESUMO

Controlling the macroscopic properties of materials, particularly quantum materials, via external inputs such as optical fields is a key goal of modern physical science. The Faraday Discussion presented a cross section of current experimental and theoretical progress with mostly ultrashort pulse excitations with frequencies ranging from the X-ray to the THz regions of the spectrum. This paper offers a perspective on the meaning of control in different scientific and engineering contexts. Despite the enormous challenge of implementing full feedback control on the types of material of interest in this discussion, I sketch such a system taken from a photosynthetic context to provide inspiration for future development in control of materials.

9.
J Biol Chem ; 298(11): 102519, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36152752

RESUMO

Plants and algae are faced with a conundrum: harvesting sufficient light to drive their metabolic needs while dissipating light in excess to prevent photodamage, a process known as nonphotochemical quenching. A slowly relaxing form of energy dissipation, termed qH, is critical for plants' survival under abiotic stress; however, qH location in the photosynthetic membrane is unresolved. Here, we tested whether we could isolate subcomplexes from plants in which qH was induced that would remain in an energy-dissipative state. Interestingly, we found that chlorophyll (Chl) fluorescence lifetimes were decreased by qH in isolated major trimeric antenna complexes, indicating that they serve as a site for qH-energy dissipation and providing a natively quenched complex with physiological relevance to natural conditions. Next, we monitored the changes in thylakoid pigment, protein, and lipid contents of antenna with active or inactive qH but did not detect any evident differences. Finally, we investigated whether specific subunits of the major antenna complexes were required for qH but found that qH was insensitive to trimer composition. Because we previously observed that qH can occur in the absence of specific xanthophylls, and no evident changes in pigments, proteins, or lipids were detected, we tentatively propose that the energy-dissipative state reported here may stem from Chl-Chl excitonic interaction.


Assuntos
Clorofila , Complexos de Proteínas Captadores de Luz , Complexo de Proteína do Fotossistema II , Plantas , Clorofila/química , Luz , Complexos de Proteínas Captadores de Luz/química , Fotossíntese , Complexo de Proteína do Fotossistema II/química , Plantas/química , Tilacoides/química , Xantofilas/química
10.
J Phys Chem Lett ; 13(32): 7413-7419, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35929598

RESUMO

The commonly used Franck-Condon (FC) approximation is inadequate for explaining the electronic spectra of compounds that possess vibrations with substantial Herzberg-Teller (HT) couplings. Metal-based tetrapyrrole derivatives, which are ubiquitous natural pigments, often exhibit prominent HT activity. In this paper, we compare the condensed phase spectra of zinc-tetraphenylporphyrin (ZnTPP) and zinc-phthalocyanine (ZnPc), which exhibit vastly different spectral features in spite of sharing a common tetrapyrrole backbone. The absorption and emission spectra of ZnTPP are characterized by a lack of mirror symmetry and nontrivial temperature dependence. In contrast, mirror symmetry is restored, and the nontrivial temperature-dependent features disappear in ZnPc. We attribute these differences to FC-HT interference, which is less pronounced in ZnPc because of a larger FC component in the dipole moment that leads to FC-dominated transitions. A single minimalistic FC-HT vibronic model reproduces all the experimental spectral features of these molecules. These observations suggest that FC-HT interference is highly susceptible to chemical modification.


Assuntos
Tetrapirróis , Vibração , Fenômenos Químicos , Temperatura , Zinco
11.
J Chem Phys ; 156(20): 205102, 2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35649869

RESUMO

We explore the photoprotection dynamics of Nannochloropsis oceanica using time-correlated single photon counting under regular and irregular actinic light sequences. The varying light sequences mimic natural conditions, allowing us to probe the real-time response of non-photochemical quenching (NPQ) pathways. Durations of fluctuating light exposure during a fixed total experimental time and prior light exposure of the algae are both found to have a profound effect on NPQ. These observations are rationalized with a quantitative model based on the xanthophyll cycle and the protonation of LHCX1. The model is able to accurately describe the dynamics of non-photochemical quenching across a variety of light sequences. The combined model and observations suggest that the accumulation of a quenching complex, likely zeaxanthin bound to a protonated LHCX1, is responsible for the gradual rise in NPQ. Additionally, the model makes specific predictions for the light sequence dependence of xanthophyll concentrations that are in reasonable agreement with independent chromatography measurements taken during a specific light/dark sequence.


Assuntos
Xantofilas , Xantofilas/metabolismo , Zeaxantinas
12.
Plant Cell Environ ; 45(8): 2428-2445, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35678230

RESUMO

Photosynthetic organisms use sunlight as the primary energy source to fix CO2 . However, in nature, light energy is highly variable, reaching levels of saturation for periods ranging from milliseconds to hours. In the green microalga Chlamydomonas reinhardtii, safe dissipation of excess light energy by nonphotochemical quenching (NPQ) is mediated by light-harvesting complex stress-related (LHCSR) proteins and redistribution of light-harvesting antennae between the photosystems (state transition). Although each component underlying NPQ has been documented, their relative contributions to NPQ under fluctuating light conditions remain unknown. Here, by monitoring NPQ in intact cells throughout high light/dark cycles of various illumination periods, we find that the dynamics of NPQ depend on the timescales of light fluctuations. We show that LHCSRs play a major role during the light phases of light fluctuations and describe their role in growth under rapid light fluctuations. We further reveal an activation of NPQ during the dark phases of all high light/dark cycles and show that this phenomenon arises from state transition. Finally, we show that LHCSRs and state transition synergistically cooperate to enable NPQ response during light fluctuations. These results highlight the dynamic functioning of photoprotection under light fluctuations and open a new way to systematically characterize the photosynthetic response to an ever-changing light environment.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Chlamydomonas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Proteínas de Choque Térmico/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo
13.
Nat Mater ; 21(7): 761-766, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35681064

RESUMO

Exciton polaritons, the part-light and part-matter quasiparticles in semiconductor optical cavities, are promising for exploring Bose-Einstein condensation, non-equilibrium many-body physics and analogue simulation at elevated temperatures. However, a room-temperature polaritonic platform on par with the GaAs quantum wells grown by molecular beam epitaxy at low temperatures remains elusive. The operation of such a platform calls for long-lifetime, strongly interacting excitons in a stringent material system with large yet nanoscale-thin geometry and homogeneous properties. Here, we address this challenge by adopting a method based on the solution synthesis of excitonic halide perovskites grown under nanoconfinement. Such nanoconfinement growth facilitates the synthesis of smooth and homogeneous single-crystalline large crystals enabling the demonstration of XY Hamiltonian lattices with sizes up to 10 × 10. With this demonstration, we further establish perovskites as a promising platform for room temperature polaritonic physics and pave the way for the realization of robust mode-disorder-free polaritonic devices at room temperature.


Assuntos
Compostos de Cálcio , Óxidos , Compostos de Cálcio/química , Óxidos/química , Temperatura , Titânio/química
14.
J Phys Chem Lett ; 13(20): 4479-4485, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35575065

RESUMO

Photoinduced proton-coupled electron transfer and long-range two-proton transport via a Grotthuss-type mechanism are investigated in a biomimetic construct. The ultrafast, nonequilibrium dynamics are assessed via two-dimensional electronic vibrational spectroscopy, in concert with electrochemical and computational techniques. A low-frequency mode is identified experimentally and found to promote double proton and electron transfer, supported by recent theoretical simulations of a similar but abbreviated (non-photoactive) system. Excitation frequency peak evolution and center line slope dynamics show direct evidence of strongly coupled nuclear and electronic degrees of freedom, from which we can conclude that the double proton and electron transfer processes are concerted (up to an uncertainty of 24 fs). The nonequilibrium pathway from the photoexcited Franck-Condon region to the E2PT state is characterized by an ∼110 fs time scale. This study and the tools presented herein constitute a new window into hot charge transfer processes involving an electron and multiple protons.


Assuntos
Elétrons , Prótons , Transporte de Elétrons , Movimento (Física) , Análise Espectral
15.
J Phys Chem B ; 126(15): 2899-2911, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35389662

RESUMO

Some molecules of chemical and biological significance possess vibrations with significant Herzberg-Teller (HT) couplings, which render the Franck-Condon (FC) approximation inadequate and cause the breakdown of the well-known mirror-image symmetry between linear absorption and emission spectra. Using a model two-state system with displaced harmonic potential surfaces, we show analytically that the FC-HT interference gives rise to asymmetric intensity modification, which has the same sign for all transitions on one side of the 0-0 absorption line and the opposite sign in the equivalent fluorescence transitions, while the trend is exactly reversed for all transitions on the other side the 0-0 line. We examine the dependence of the absorption-emission asymmetry on the mode frequency, Huang-Rhys factor, and dipole moment parameters to show the recovery of symmetry with particular combinations of parameters and a crossover from fluorescence to absorption dominance. We illustrate the analytical predictions through numerically exact calculations in models of one and two discrete vibrational modes and in the presence of a harmonic dissipative bath. In addition to homogeneous broadening effects, we identify large asymmetric shifts of absorption and emission band maxima, which can produce the illusion of unequal frequencies in the ground and excited potential surfaces as well as a nontrivial modulation of spectral asymmetry by temperature, which results from the enhancement of transitions on one side of the 0-0 line. These findings will aid the interpretation of experimental spectra in HT-active molecular systems.


Assuntos
Vibração
16.
Nat Commun ; 13(1): 2275, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477708

RESUMO

Photosystem II is crucial for life on Earth as it provides oxygen as a result of photoinduced electron transfer and water splitting reactions. The excited state dynamics of the photosystem II-reaction center (PSII-RC) has been a matter of vivid debate because the absorption spectra of the embedded chromophores significantly overlap and hence it is extremely difficult to distinguish transients. Here, we report the two-dimensional electronic-vibrational spectroscopic study of the PSII-RC. The simultaneous resolution along both the visible excitation and infrared detection axis is crucial in allowing for the character of the excitonic states and interplay between them to be clearly distinguished. In particular, this work demonstrates that the mixed exciton-charge transfer state, previously proposed to be responsible for the far-red light operation of photosynthesis, is characterized by the ChlD1+Phe radical pair and can be directly prepared upon photoexcitation. Further, we find that the initial electron acceptor in the PSII-RC is Phe, rather than PD1, regardless of excitation wavelength.


Assuntos
Oxigênio , Complexo de Proteína do Fotossistema II , Transporte de Elétrons , Luz , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo
17.
J Am Chem Soc ; 144(14): 6298-6310, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35353523

RESUMO

Understanding how the complex interplay among excitonic interactions, vibronic couplings, and reorganization energy determines coherence-enabled transport mechanisms is a grand challenge with both foundational implications and potential payoffs for energy science. We use a combined experimental and theoretical approach to show how a modest change in structure may be used to modify the exciton delocalization, tune electronic and vibrational coherences, and alter the mechanism of exciton transfer in covalently linked cofacial Zn-porphyrin dimers (meso-beta linked ABm-ß and meso-meso linked AAm-m). While both ABm-ß and AAm-m feature zinc porphyrins linked by a 1,2-phenylene bridge, differences in the interporphyrin connectivity set the lateral shift between macrocycles, reducing electronic coupling in ABm-ß and resulting in a localized exciton. Pump-probe experiments show that the exciton dynamics is faster by almost an order of magnitude in the strongly coupled AAm-m dimer, and two-dimensional electronic spectroscopy (2DES) identifies a vibronic coherence that is absent in ABm-ß. Theoretical studies indicate how the interchromophore interactions in these structures, and their system-bath couplings, influence excitonic delocalization and vibronic coherence-enabled rapid exciton transport dynamics. Real-time path integral calculations reproduce the exciton transfer kinetics observed experimentally and find that the linking-modulated exciton delocalization strongly enhances the contribution of vibronic coherences to the exciton transfer mechanism, and that this coherence accelerates the exciton transfer dynamics. These benchmark molecular design, 2DES, and theoretical studies provide a foundation for directed explorations of nonclassical effects on exciton dynamics in multiporphyrin assemblies.


Assuntos
Porfirinas , Eletrônica , Modelos Teóricos , Porfirinas/química , Análise Espectral , Vibração
18.
J Phys Chem B ; 125(43): 11785-11786, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34732053
20.
J Chem Phys ; 155(5): 054201, 2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34364357

RESUMO

We introduce a heterodimer model in which multiple mechanisms of vibronic coupling and their impact on energy transfer can be explicitly studied. We consider vibronic coupling that arises through either Franck-Condon activity in which each site in the heterodimer has a local electron-phonon coupling or Herzberg-Teller activity in which the transition dipole moment coupling the sites has an explicit vibrational mode-dependence. We have computed two-dimensional electronic-vibrational (2DEV) spectra for this model while varying the magnitude of these two effects and find that 2DEV spectra contain static and dynamic signatures of both types of vibronic coupling. Franck-Condon activity emerges through a change in the observed excitonic structure, while Herzberg-Teller activity is evident in the appearance of significant side-band transitions that mimic the lower-energy excitonic structure. A comparison of quantum beating patterns obtained from analysis of the simulated 2DEV spectra shows that this technique can report on the mechanism of energy transfer, elucidating a means of experimentally determining the role of specific vibronic coupling mechanisms in such processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...