Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropharmacology ; 150: 153-163, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30926450

RESUMO

Accumulating evidence indicates that exposure to general anesthetics during infancy and childhood can cause persistent cognitive impairment, alterations in synaptic plasticity, and, to a lesser extent, increased incidence of behavioral disorders. Unfortunately, the developmental parameters of susceptibility to general anesthetics are not well understood. Adolescence is a critical developmental period wherein multiple late developing brain regions may also be vulnerable to enduring general anesthetic effects. Given the breadth of the adolescent age span, this group potentially represents millions more individuals than those exposed during early childhood. In this study, isoflurane exposure within a well-characterized adolescent period in Sprague-Dawley rats elicited immediate and persistent anxiety- and impulsive-like responding, as well as delayed cognitive impairment into adulthood. These behavioral abnormalities were paralleled by atypical dendritic spine morphology in the prefrontal cortex (PFC) and hippocampus (HPC), suggesting delayed anatomical maturation, and shifts in inhibitory function that suggest hypermaturation of extrasynaptic GABAA receptor inhibition. Preventing this hypermaturation of extrasynaptic GABAA receptor-mediated function in the PFC selectively reversed enhanced impulsivity resulting from adolescent isoflurane exposure. Taken together, these data demonstrate that the developmental window for susceptibility to enduring untoward effects of general anesthetics may be much longer than previously appreciated, and those effects may include affective behaviors in addition to cognition.


Assuntos
Afeto/efeitos dos fármacos , Anestésicos Gerais/farmacologia , Comportamento Animal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Isoflurano/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Animais , Espinhas Dendríticas/efeitos dos fármacos , Comportamento Exploratório/efeitos dos fármacos , Comportamento Impulsivo/efeitos dos fármacos , Masculino , Córtex Pré-Frontal/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
2.
Alcohol Clin Exp Res ; 39(12): 2403-13, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26537975

RESUMO

BACKGROUND: Adolescent intermittent alcohol exposure (AIE) has profound effects on neuronal function. We have previously shown that AIE causes aberrant hippocampal structure and function that persists into adulthood. However, the possible contributions of astrocytes and their signaling factors remain largely unexplored. We investigated the acute and enduring effects of AIE on astrocytic reactivity and signaling on synaptic expression in the hippocampus, including the impact of the thrombospondin (TSP) family of astrocyte-secreted synaptogenic factors and their neuronal receptor, alpha2delta-1 (α2δ-1). Our hypothesis is that some of the influences of AIE on neuronal function may be secondary to direct effects on astrocytes. METHODS: We conducted Western blot analysis on TSPs 1 to 4 and α2δ-1 from whole hippocampal lysates 24 hours after the 4th and 10th doses of AIE, then 24 days after the last dose (in adulthood). We used immunohistochemistry to assess astrocyte reactivity (i.e., morphology) and synaptogenesis (i.e., colocalization of pre- and postsynaptic puncta). RESULTS: Adolescent AIE reduced α2δ-1 expression, and colocalized pre- and postsynaptic puncta after the fourth ethanol (EtOH) dose. By the 10th dose, increased TSP2 levels were accompanied by an increase in colocalized pre- and postsynaptic puncta, while α2δ-1 returned to control levels. Twenty-four days after the last EtOH dose (i.e., adulthood), TSP2, TSP4, and α2δ-1 expression were all elevated. Astrocyte reactivity, indicated by increased astrocytic volume and area, was also observed at that time. CONCLUSIONS: Repeated EtOH exposure during adolescence results in long-term changes in specific astrocyte signaling proteins and their neuronal synaptogenic receptor. Continued signaling by these traditionally developmental factors in adulthood may represent a compensatory mechanism whereby astrocytes reopen the synaptogenic window and repair lost connectivity, and consequently contribute to the enduring maladaptive structural and functional abnormalities previously observed in the hippocampus after AIE.


Assuntos
Etanol/toxicidade , Hipocampo/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Sinapses/metabolismo , Trombospondinas/biossíntese , Fatores Etários , Animais , Etanol/administração & dosagem , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Masculino , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Ratos , Ratos Sprague-Dawley , Sinapses/efeitos dos fármacos , Sinapses/patologia
3.
Alcohol Clin Exp Res ; 39(6): 989-97, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25916839

RESUMO

BACKGROUND: Human adolescence is a crucial stage of neurological development during which ethanol (EtOH) consumption is often at its highest. Alcohol abuse during adolescence may render individuals at heightened risk for subsequent alcohol abuse disorders, cognitive dysfunction, or other neurological impairments by irreversibly altering long-term brain function. To test this possibility, we modeled adolescent alcohol abuse (i.e., intermittent EtOH exposure during adolescence [AIE]) in rats to determine whether adolescent exposure to alcohol leads to long-term structural and functional changes that are manifested in adult neuronal circuitry. METHODS: We specifically focused on hippocampal area CA1, a brain region associated with learning and memory. Using electrophysiological, immunohistochemical, and neuroanatomical approaches, we measured post-AIE changes in synaptic plasticity, dendritic spine morphology, and synaptic structure in adulthood. RESULTS: We found that AIE-pretreated adult rats manifest robust long-term potentiation, induced at stimulus intensities lower than those required in controls, suggesting a state of enhanced synaptic plasticity. Moreover, AIE resulted in an increased number of dendritic spines with characteristics typical of immaturity. Immunohistochemistry-based analysis of synaptic structures indicated a significant decrease in the number of co-localized pre- and postsynaptic puncta. This decrease is driven by an overall decrease in 2 postsynaptic density proteins, PSD-95 and SAP102. CONCLUSIONS: Taken together, these findings reveal that repeated alcohol exposure during adolescence results in enduring structural and functional abnormalities in the hippocampus. These synaptic changes in the hippocampal circuits may help to explain learning-related behavioral changes in adult animals preexposed to AIE.


Assuntos
Envelhecimento/efeitos dos fármacos , Envelhecimento/patologia , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/fisiopatologia , Etanol/efeitos adversos , Envelhecimento/psicologia , Animais , Região CA1 Hipocampal/anormalidades , Região CA1 Hipocampal/patologia , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/patologia , Proteína 4 Homóloga a Disks-Large , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Proteínas de Membrana/metabolismo , Neuropeptídeos/metabolismo , Ratos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/patologia
4.
Alcohol Clin Exp Res ; 38(11): 2800-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25421517

RESUMO

BACKGROUND: The long-term consequences of adolescent alcohol abuse that persist into adulthood are poorly understood and have not been widely investigated. We have shown that intermittent exposure to alcohol during adolescence decreased the amplitude of GABAA receptor (GABAA R)-mediated tonic currents in hippocampal dentate granule cells in adulthood. The aim of this study was to investigate the enduring effects of chronic intermittent alcohol exposure during adolescence or adulthood on the expression of hippocampal GABAA Rs. METHODS: We used a previously characterized tissue fractionation method to isolate detergent resistant membranes and soluble fractions, followed by Western blots to measure GABAA R protein expression. We also measured mRNA levels of GABAA R subunits using quantitative real-time polymerase chain reaction. RESULTS: Although the protein levels of α1-, α4-, and δ-GABAA R subunits remained stable between postnatal day (PD) 30 (early adolescence) and PD71 (adulthood), the α5-GABAA R subunit was reduced across that period. In rats that were subjected to adolescent intermittent ethanol (AIE) exposure between PD30 and PD46, there was a significant reduction in the protein levels of the δ-GABAA R, in the absence of any changes in mRNA levels, at 48 hours and 26 days after the last ethanol (EtOH) exposure. Protein levels of the α4-GABAA R subunit were significantly reduced, but mRNA levels were increased, 26 days (but not 48 hours) after the last AIE exposure. Protein levels of α5-GABAA R were not changed by AIE, but mRNA levels were reduced at 48 hours but normalized 26 days after AIE. In contrast to the effects of AIE, chronic intermittent ethanol (CIE) exposure during adulthood had no effect on expression of any of the GABAA R subunits examined. CONCLUSIONS: AIE produced both short- and long-term alterations of GABAA R subunits mRNA and protein expression in the hippocampus, whereas CIE produced no long-lasting effects on those measures. The observed reduction of protein levels of the δ-GABAA R, specifically, is consistent with previously reported altered hippocampal GABAA R-mediated electrophysiological responses after AIE. The absence of effects of CIE underscores the emerging view of adolescence as a time of distinctive vulnerability to the enduring effects of repeated EtOH exposure.


Assuntos
Etanol/toxicidade , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Subunidades Proteicas/biossíntese , Receptores de GABA-A/biossíntese , Fatores Etários , Animais , Etanol/administração & dosagem , Regulação da Expressão Gênica , Hipocampo/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley
5.
PLoS One ; 9(4): e94071, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24732142

RESUMO

The human apolipoprotein ε4 allele (APOE4) has been implicated as one of the strongest genetic risk factors associated with Alzheimer's disease (AD) and in influencing normal cognitive functioning. Previous studies have demonstrated that mice expressing human apoE4 display deficits in behavioral and neurophysiological outcomes compared to those with apoE3. Ovarian hormones have also been shown to be important in modulating synaptic processes underlying cognitive function, yet little is known about how their effects are influenced by apoE. In the current study, female adult human APOE targeted replacement (TR) mice were utilized to examine the effects of human APOE genotype and long-term ovarian hormone loss on synaptic plasticity in limbic regions by measuring dendritic spine density and electrophysiological function. No significant genotype differences were observed on any outcomes within intact mice. However, there was a significant main effect of genotype on total spine density in apical dendrites in the hippocampus, with post-hoc t-tests revealing a significant reduction in spine density in apoE3 ovariectomized (OVX) mice compared to sham operated mice. There was also a significant main effect of OVX on the magnitude of LTP, with post-hoc t-tests revealing a decrease in apoE3 OVX mice relative to sham. In contrast, apoE4 OVX mice showed increased synaptic activity relative to sham. In the lateral amygdala, there was a significant increase in total spine density in apoE4 OVX mice relative to sham. This increase in spine density was consistent with a significant increase in spontaneous excitatory activity in apoE4 OVX mice. These findings suggest that ovarian hormones differentially modulate synaptic integrity in an apoE-dependent manner within brain regions that are susceptible to neurophysiological dysfunction associated with AD.


Assuntos
Apolipoproteínas E/genética , Potenciais Pós-Sinápticos Excitadores , Marcação de Genes , Hormônios/metabolismo , Plasticidade Neuronal , Especificidade de Órgãos , Ovário/metabolismo , Tonsila do Cerebelo/patologia , Animais , Região CA1 Hipocampal/patologia , Espinhas Dendríticas/patologia , Feminino , Humanos , Potenciação de Longa Duração , Camundongos , Ovariectomia , Transmissão Sináptica
6.
Alcohol Clin Exp Res ; 37(12): 2074-85, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23889304

RESUMO

BACKGROUND: Chronic alcohol use, especially exposure to alcohol during adolescence or young adulthood, is closely associated with cognitive deficits that may persist into adulthood. Therefore, it is essential to identify possible neuronal mechanisms underlying the observed deficits in learning and memory. Hippocampal interneurons play a pivotal role in regulating hippocampus-dependent learning and memory by exerting strong inhibition on excitatory pyramidal cells. The function of these interneurons is regulated not only by synaptic inputs from other types of neurons but is also precisely governed by their own intrinsic membrane ionic conductances. The voltage-gated A-type potassium current (IA ) regulates the intrinsic membrane properties of neurons, and disruption of IA is responsible for many neuropathological processes including learning and memory deficits. Thus, it represents a previously unexplored cellular mechanism whereby chronic ethanol (EtOH) may alter hippocampal memory-related functioning. METHODS: Using whole-cell electrophysiological recording methods, we investigated the enduring effects of chronic intermittent ethanol (CIE) exposure during adolescence or adulthood on IA in rat CA1 interneurons. RESULTS: We found that the mean peak amplitude of IA was significantly reduced after CIE in either adolescence or adulthood, but IA density was attenuated after CIE in adolescence but not after CIE in adulthood. In addition, the voltage-dependent steady-state activation and inactivation of IA were altered in interneurons after CIE. CONCLUSIONS: These findings suggest that CIE can cause long-term changes in IA channels in interneurons and thus may alter their inhibitory influences on memory-related local hippocampal circuits, which could be, in turn, responsible for learning and memory impairments observed after chronic EtOH exposure.


Assuntos
Região CA1 Hipocampal/fisiologia , Etanol/administração & dosagem , Interneurônios/fisiologia , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/fisiologia , Fatores Etários , Animais , Condutividade Elétrica , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
7.
PLoS One ; 8(5): e62940, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23675442

RESUMO

BACKGROUND: Adolescence is not only a critical period of late-stage neurological development in humans, but is also a period in which ethanol consumption is often at its highest. Given the prevalence of ethanol use during this vulnerable developmental period we assessed the long-term effects of chronic intermittent ethanol (CIE) exposure during adolescence, compared to adulthood, on performance in the radial-arm maze (RAM) and operant food-reinforced responding in male rats. METHODOLOGY/PRINCIPAL FINDINGS: Male Sprague Dawley rats were exposed to CIE (or saline) and then allowed to recover. Animals were then trained in either the RAM task or an operant task using fixed- and progressive- ratio schedules. After baseline testing was completed all animals received an acute ethanol challenge while blood ethanol levels (BECs) were monitored in a subset of animals. CIE exposure during adolescence, but not adulthood decreased the amount of time that animals spent in the open portions of the RAM arms (reminiscent of deficits in risk-reward integration) and rendered animals more susceptible to the acute effects of an ethanol challenge on working memory tasks. The operant food reinforced task showed that these effects were not due to altered food motivation or to differential sensitivity to the nonspecific performance-disrupting effects of ethanol. However, CIE pre-treated animals had lower BEC levels than controls during the acute ethanol challenges indicating persistent pharmacokinetic tolerance to ethanol after the CIE treatment. There was little evidence of enduring effects of CIE alone on traditional measures of spatial and working memory. CONCLUSIONS/SIGNIFICANCE: These effects indicate that adolescence is a time of selective vulnerability to the long-term effects of repeated ethanol exposure on neurobehavioral function and acute ethanol sensitivity. The positive and negative findings reported here help to further define the nature and extent of the impairments observed after adolescent CIE and provide direction for future research.


Assuntos
Consumo de Bebidas Alcoólicas/psicologia , Condicionamento Operante/efeitos dos fármacos , Etanol/administração & dosagem , Aprendizagem em Labirinto/efeitos dos fármacos , Adolescente , Adulto , Fatores Etários , Consumo de Bebidas Alcoólicas/sangue , Animais , Alimentos , Humanos , Masculino , Memória/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Reforço Psicológico , Recompensa , Tempo
8.
Alcohol Clin Exp Res ; 37(7): 1154-60, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23413887

RESUMO

BACKGROUND: In recent years, it has become clear that acute ethanol (EtOH) affects various neurobiological and behavioral functions differently in adolescent animals than in adults. However, less is known about the long-term neural consequences of chronic EtOH exposure during adolescence, and most importantly whether adolescence represents a developmental period of enhanced vulnerability to such effects. METHODS: We made whole-cell recordings of GABAA receptor-mediated tonic inhibitory currents from dentate gyrus granule cells (DGGCs) in hippocampal slices from adult rats that had been treated with chronic intermittent ethanol (CIE) or saline during adolescence, young adulthood, or adulthood. RESULTS: CIE reduced baseline tonic current amplitude in DGGCs from animals pretreated with EtOH during adolescence, but not in GCs from those pretreated with EtOH during young adulthood or adulthood. Similarly, the enhancement of tonic currents by acute EtOH exposure ex vivo was increased in GCs from animals pretreated with EtOH during adolescence, but not in those from animals pretreated during either of the other 2 developmental periods. CONCLUSIONS: These findings underscore our recent report that CIE during adolescence results in enduring alterations in tonic current and its acute EtOH sensitivity and establish that adolescence is a developmental period during which the hippocampal formation is distinctively vulnerable to long-term alteration by chronic EtOH exposure.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/fisiopatologia , Giro Denteado/fisiologia , Etanol/toxicidade , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Receptores de GABA-A/fisiologia , Fatores Etários , Animais , Giro Denteado/efeitos dos fármacos , Etanol/administração & dosagem , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley
9.
Alcohol Clin Exp Res ; 36(2): 279-85, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22014205

RESUMO

BACKGROUND: Alcohol drinking by adolescents is a major public health concern. Adolescents tend to drink in a chronic, intermittent, that is, "binge," pattern, and such patterns of ethanol exposure are associated with increased risk of neurotoxicity and the development of alcohol use disorders (Crews et al., 2000; Hunt, 1993). Both adolescent humans and rats are more sensitive to acute ethanol-induced memory impairment than adults (Acheson et al., 1998; Markwiese et al., 1998). Furthermore, in rats, chronic intermittent ethanol (CIE) exposure during adolescence produces a long-lasting, perhaps permanent, maintenance of the adolescent high sensitivity to ethanol's amnestic effects (White et al., 2000a). We have previously shown that acute ethanol increases tonic inhibitory current mediated by extrasynaptic GABA(A) receptors more efficaciously in dentate granule cells (DGCs) from adolescent than adult rats (Fleming et al., 2007). In this study, we determined if CIE during adolescence produced long-lasting changes in this tonic current. METHODS: Adolescent rats were subjected to a CIE exposure regimen and allowed to mature to full adulthood. Whole-cell voltage-clamp measurements of tonic inhibitory current and mean phasic current were made in vitro in hippocampal brain slices. RESULTS: CIE exposure during adolescence increased the ethanol sensitivity of tonic inhibitory current mediated by extrasynaptic GABA(A) receptors and decreased the ethanol sensitivity of phasic, synaptic GABA(A) receptor-mediated current in adult DGCs. CONCLUSIONS: CIE exposure during adolescence produces long-lasting changes in the function and ethanol sensitivity of extrasynaptic GABA(A) receptors in DGCs. These changes appear to "lock-in" and maintain the high adolescent sensitivity to ethanol in these cells. Furthermore, greater ethanol enhancement of tonic inhibition in the hippocampal formation after CIE is consistent with the greater sensitivity to ethanol-induced memory impairment after adolescent CIE. This finding represents the first demonstration of a long-term, memory-related cellular effect of CIE during adolescence, and the "lock-in" of adolescent ethanol sensitivity that these results suggest could represent a conceptual step forward in understanding the vulnerability of the adolescent brain to alcohol.


Assuntos
Envelhecimento/fisiologia , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Animais , Interpretação Estatística de Dados , Giro Denteado/efeitos dos fármacos , Giro Denteado/fisiologia , Fenômenos Eletrofisiológicos , Técnicas In Vitro , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/psicologia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/efeitos dos fármacos
10.
Alcohol ; 45(6): 577-83, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21600727

RESUMO

In recent years, the effect of ethanol on tonic inhibition mediated by extrasynaptic GABA(A) receptors (GABA(A)Rs) has become a topic of intensive investigation and some controversy. The high ethanol sensitivity of extrasynaptic GABA(A) receptors containing the δ subunit combined with the role of tonic inhibition in maintaining the background inhibitory "tone" in hippocampal circuits has suggested that they may play a key role mediating certain behavioral effects of ethanol, including those related to learning and memory. We have found that ethanol disrupts learning and learning-related hippocampal function more potently in adolescent animals than in adults and that ethanol promotes extrasynaptic receptor-mediated GABAergic tonic currents more potently in adolescents than in adults. However, there have been no studies of potential mechanisms that may underlie the enhanced ethanol sensitivity of the tonic current in adolescents. In this study, we recorded GABA(A) receptor-mediated tonic currents in dentate gyrus granule cells in hippocampal slices from adolescent and adult rats. As previously reported, we found that ethanol potentiated the currents more efficaciously in cells from adolescents than in those from adults. We also found that the GAT-1 blocker NO-711 eliminated this developmental difference in ethanol sensitivity. These findings suggest that regulation of ambient GABA by GABA transporters may contribute to the difference in ethanol sensitivity between adolescents and adults.


Assuntos
Giro Denteado/efeitos dos fármacos , Etanol/farmacologia , Proteínas da Membrana Plasmática de Transporte de GABA/fisiologia , Hipocampo/metabolismo , Ácido gama-Aminobutírico/metabolismo , Envelhecimento , Animais , Giro Denteado/fisiologia , Neurônios/fisiologia , Ácidos Nipecóticos/farmacologia , Oximas/farmacologia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/fisiologia
11.
Alcohol ; 43(8): 603-18, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20004338

RESUMO

Decades after ethanol was first described as a gamma-aminobutyric acid (GABA) mimetic, the precise mechanisms that produce the acute effects of ethanol and the physiological adaptations that underlie ethanol tolerance and dependence remain unclear. Although a substantial body of evidence suggests that ethanol acts on GABAergic neurotransmission to enhance inhibition in the central nervous system, the precise mechanisms underlying the physiological effects of both acute and chronic ethanol exposure are still under investigation. We have used in vitro ethanol exposure followed by recording of miniature inhibitory postsynaptic currents (mIPSCs) to determine whether acute or chronic ethanol exposure directly alters synaptic GABA(A) receptor (GABA(A)R) function or GABA release in cultured cortical and hippocampal neurons. Acute ethanol exposure slightly increased the duration of mIPSCs in hippocampal neurons but did not alter mIPSC kinetics in cortical neurons. Acute ethanol exposure did not change mIPSC frequency in either hippocampal or cortical neurons. One day of chronic ethanol exposure produced a transient decrease in mIPSC duration in cortical neurons but did not alter mIPSC kinetics in hippocampal neurons. Chronic ethanol exposure did not change mIPSC frequency in either hippocampal or cortical neurons. Chronic ethanol exposure also did not produce substantial cross-tolerance to a benzodiazepine in either hippocampal or cortical neurons. The results suggest that ethanol exposure in vitro has limited effects on synaptic GABA(A)R function and action potential-independent GABA release in cultured neurons and that ethanol exposure in cultured cortical and hippocampal neurons may not reproduce all the effects that occur in vivo and in acute brain slices.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Etanol/farmacologia , Hipocampo/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , Animais , Benzodiazepinonas/farmacologia , Células Cultivadas , Córtex Cerebral/metabolismo , Tolerância a Medicamentos , Feminino , Hipocampo/metabolismo , Masculino , Pregnanolona/biossíntese , Ratos , Receptores de GABA-A/efeitos dos fármacos
12.
J Neurophysiol ; 97(5): 3806-11, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17376852

RESUMO

Ethanol consumption by adolescents is a public health problem of striking importance. Educational and clinical efforts to address this problem have been aided by recent neurobehavioral studies indicating that ethanol disrupts memory and memory-related brain functions more powerfully in adolescent animals than in adults. Still, the mechanisms underlying this developmental sensitivity remain unclear. GABA(A) receptor (GABA(A)R)-mediated neurotransmission in the hippocampal formation, particularly that which is driven by extrasynaptic GABA(A)Rs, is enhanced by pharmacologically relevant concentrations of ethanol, and may be, in part, responsible for the modulation of memory and memory-related circuit plasticity. Using hippocampal slices from adolescent and adult rats, we have shown that tonic current mediated by extrasynaptic GABA(A)Rs is larger in dentate gyrus granule cells from adult animals than in those from adolescents and that 30 mM ethanol enhances inhibitory tonic current more in cells from adolescent rats than in those from adults. It is possible that more powerful promotion of tonic GABA(A)R-mediated inhibition by ethanol in the dentate gyrus of adolescent rats, compared with adults, contributes to the developmental differences that have previously been observed with respect to ethanol-induced memory impairment and reduction of synaptic plasticity.


Assuntos
Envelhecimento/fisiologia , Depressores do Sistema Nervoso Central/farmacologia , Giro Denteado/efeitos dos fármacos , Etanol/farmacologia , Inibição Neural/efeitos dos fármacos , Receptores de GABA-A/fisiologia , Fatores Etários , Animais , Bicuculina/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Giro Denteado/citologia , Giro Denteado/metabolismo , Interações Medicamentosas , Antagonistas GABAérgicos/farmacologia , Técnicas In Vitro , Masculino , Picrotoxina/farmacologia , Ratos , Ratos Sprague-Dawley
13.
Pharmacol Ther ; 101(3): 211-26, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15031000

RESUMO

gamma-Aminobutyric acid(A) (GABA(A)) receptors are ligand-gated ion channels that, predominantly, mediate inhibitory synaptic transmission in the CNS. These receptors are pentameric complexes that are comprised of subunits from several classes (alpha, beta, gamma, delta, ), with each class consisting of several isoforms. Chronic ethanol consumption alters GABA(A) receptor function producing cellular tolerance to GABA and ethanol, cross-tolerance to benzodiazepines and barbiturates, and sensitization to inverse agonists. Recent studies have clearly demonstrated that GABA(A) receptors play an important role in ethanol dependence and functional properties of GABA(A) receptor are altered following chronic ethanol administration. However, the exact mechanisms that account for alterations in GABA(A) receptor function following chronic ethanol administration have not been resolved. The mechanisms responsible for adaptation of GABA(A) receptors to chronic ethanol exposure may involve ethanol-induced changes in cell surface expression, subcellular localization, synaptic localization, receptor phosphorylation, neurosteroids, and/or changes in GABA(A) receptor subunit composition. In this review, we provide an overview of recent data pertaining to mechanisms that could be responsible for altered properties and expression of GABA(A) receptors following chronic ethanol administration.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Receptores de GABA-A/efeitos dos fármacos , Alcoolismo/metabolismo , Depressores do Sistema Nervoso Central/administração & dosagem , Tolerância a Medicamentos , Etanol/administração & dosagem , Humanos , Receptores de GABA-A/biossíntese , Receptores de GABA-A/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...